
HSA Programmer's Reference Manual: HSAIL
Virtual ISA and Programming Model,

Compiler Writer, and Object Format (BRIG)

Revision: Version 1.0 Final • Issue Date: 6 Mar 2015

© 2015 HSA Foundation. All rights reserved.

The contents of this document are provided in connection with the HSA Foundation specifications. This
specification is protected by copyright laws and contains material proprietary to the HSA Foundation. It or
any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or
otherwise exploited in any manner without the express prior written permission of HSA Foundation. You
may use this specification for implementing the functionality therein, without altering or removing any
trademark, copyright or other notice from the specification, but the receipt or possession of this
specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture,
use, or sell anything that it may describe, in whole or in part.

HSA Foundation grants express permission to any current Founder, Promoter, Supporter Contributor,
Academic or Associate member of HSA Foundation to copy and redistribute UNMODIFIED versions of this
specification in any fashion, provided that NO CHARGE is made for the specification and the latest available
update of the specification for any version of the API is used whenever possible. Such distributed
specification may be re-formatted AS LONG AS the contents of the specification are not changed in any way.
The specification may be incorporated into a product that is sold as long as such product includes significant
independent work developed by the seller. A link to the current version of this specification on the HSA
Foundation web-site should be included whenever possible with specification distributions.

HSA Foundation makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this specification, including, without limitation, any implied warranties of merchantability or
fitness for a particular purpose or non-infringement of any intellectual property. HSA Foundation makes no,
and expressly disclaims any, warranties, express or implied, regarding the correctness, accuracy,
completeness, timeliness, and reliability of the specification. Under no circumstances will the HSA
Foundation, or any of its Founders, Promoters, Supporters, Academic, Contributors, and Associates
members or their respective partners, officers, directors, employees, agents or representatives be liable for
any damages, whether direct, indirect, special or consequential damages for lost revenues, lost profits, or
otherwise, arising from or in connection with these materials.

2 | HSA Programmer's ReferenceManual, Version1.0 Final

Acknowledgments

HSA Programmer's ReferenceManual, Version1.0 Final | 3

Acknowledgments
This specification is the result of the contributions of many people. Here is a partial list of the contributors,
including the companies that they represented at the time of their contribution.

l Michael Bedy, AMD

l Paul Blinzer, AMD

l Boleslaw Ciesielski, AMD

l Eric Finger, AMD

l Mark Fowler, AMD

l Mike Houston, AMD

l Nikolay Haustov, AMD

l Mark Herdeg, AMD

l Bill Licea-Kane, AMD

l Leonid Lobachev, AMD

l Mike Mantor, AMD

l Vicki Meagher, AMD

l Stanislav Mekhanoshin, AMD

l Dmitry Preobrazhensky, AMD

l Valery Pykhtin, AMD

l Chris Reeve, AMD

l Phil Rogers, AMD

l Norm Rubin, AMD

l Benjamin Sander, AMD

l Elizabeth Sanville, AMD

l Oleg Semenov, AMD

l Brian Sumner, AMD

l Yaki Tebeka, AMD

l Vinod Tipparaju, AMD

l Tony Tye, AMD (Spec. Editor)

l Micah Villmow, AMD

l Konstantin Zhuravlyov, AMD

l Jem Davies, ARM

l Ian Devereux, ARM

l Robert Elliott, ARM

l Alexander Galazin, ARM

l Rune Holm, ARM

l Kurt Shuler, Arteris

l Andrew Richards, Codeplay

l Paul D’Arcy, General Processor
Technologies

l John Glossner, General Processor
Technologies

l Greg Stoner, HSA Foundation

l Theo Drane, Imagination Technologies

l Yoong-Chert Foo, Imagination
Technologies

l John Howson, Imagination Technologies

l Georg Kolling, Imagination Technologies

l James McCarthy, Imagination
Technologies

l Jason Meridith, Imagination Technologies

l Mark Rankilor, Imagination Technologies

l Rahul Agarwal, MediaTek Inc.

l Richard Bagley, MediaTek Inc.

l Roy Ju, MediaTek Inc.

l Trent Lo, MediaTek Inc.

l Chien-Ping Lu, MediaTek Inc. (Workgroup
Chair)

l Thomas Jablin, MulticoreWare Inc.

l Chuang Na, MulticoreWare Inc.

l Greg Bellows, Qualcomm

l Lihan Bin, Qualcomm

l P.J. Bostley, Qualcomm

l Alex Bourd, Qualcomm

l Ken Dockser, Qualcomm

Acknowledgments

l Jamie Esliger, Qualcomm

l Ben Gaster, Qualcomm

l Andrew Gruber, Qualcomm

l Lee Howes, Qualcomm

l Wilson Kwan, Qualcomm

l Jack Liu, Qualcomm

l Bob Rychlik, Qualcomm

l Robert J. Simpson, Qualcomm

l Sumesh Udayakumaran, Qualcomm

l Ignacio Llamas, Samsung Electronics Co,
Ltd

l Soojung Ryu, Samsung Electronics Co, Ltd

l Matthew Locke, Texas Instruments

l Chelsi Odegaard, VTM Group

4 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 5

Contents

Acknowledgments 3

About the HSA Programmer's Reference Manual 19
Audience 19
Document Conventions 19
HSA Information Sources 19

Chapter 1. Overview 20
1.1 What Is HSAIL? 20
1.2 HSAIL Virtual Language 21
1.3 HSAIL Experimental Features 22

Chapter 2. HSAIL Programming Model 23
2.1 Overview of Grids, Work-Groups, and Work-Items 23
2.2 Work-Groups 25

2.2.1 Work-Group ID 25
2.2.2 Work-Group Flattened ID 26

2.3 Work-Items 26
2.3.1 Work-Item ID 26
2.3.2 Work-Item Flattened ID and Current Work-Item Flattened ID 27
2.3.3 Work-Item Absolute ID 27
2.3.4 Work-Item Flattened Absolute ID 27

2.4 Scalable Data-Parallel Computing 28
2.5 Active Work-Groups and Active Work-Items 28
2.6 Wavefronts, Lanes, and Wavefront Sizes 29

2.6.1 Example of Contents of a Wavefront 29
2.6.2 Wavefront Size 30

2.7 Types of Memory 30
2.8 Segments 31

2.8.1 Types of Segments 31
2.8.2 Shared Virtual Memory 35
2.8.3 Addressing for Segments 35
2.8.4 Memory Segment Access Rules 36
2.8.5 Memory Segment Isolation 39

2.9 Small and Large Machine Models 39
2.10 Base and Full Profiles 40
2.11 Race Conditions 40
2.12 Divergent Control Flow 41

2.12.1 Uniform Instructions 42
2.12.2 Using the Width Modifier with Control Transfer Instructions 44
2.12.3 (Post-)Dominator and Immediate (Post-)Dominator 45

Chapter 3. Examples of HSAIL Programs 46
3.1 Vector Add Translated to HSAIL 46
3.2 Transpose Translated to HSAIL 47

Chapter 4. HSAIL Syntax and Semantics 48
4.1 Two Formats 48

Contents

Contents

4.2 Program, Code Object, and Executable 48
4.2.1 Finalization 49
4.2.2 Loading 51
4.2.3 Execution 52

4.3 Module 53
4.3.1 Annotations 55
4.3.2 Kernel 56
4.3.3 Function 58
4.3.4 Signature 60
4.3.5 Code Block 61
4.3.6 Arg Block 62
4.3.7 Instruction 63
4.3.8 Variable 64
4.3.9 Fbarrier 68
4.3.10 Declaration and Definition Qualifiers 69

4.4 Source Text Format 74
4.5 Strings 76
4.6 Identifiers 77

4.6.1 Syntax 77
4.6.2 Scope 78

4.7 Registers 79
4.8 Constants 81

4.8.1 Integer Constants 82
4.8.2 Floating-Point Constants 83
4.8.3 Typed Constants 87
4.8.4 Aggregate Constants 91
4.8.5 How Text Format Constants Are Converted to Bit String Constants 92

4.9 Labels 94
4.10 Variable Initializers 94
4.11 Storage Duration 96
4.12 Linkage 97

4.12.1 Program Linkage 97
4.12.2 Module Linkage 98
4.12.3 Function Linkage 98
4.12.4 Arg Linkage 99
4.12.5 None Linkage 99

4.13 Data Types 99
4.13.1 Base Data Types 99
4.13.2 Packed Data Types 100
4.13.3 Opaque Data Types 101
4.13.4 Array Data Types 101

4.14 Packing Controls for Packed Data 101
4.14.1 Ranges 102
4.14.2 Packed Type Constants 103

4.15 Subword Sizes 104
4.16 Operands 104

4.16.1 Operand Compound Type 105
4.16.2 Rules for Operand Registers 105

4.17 Vector Operands 106
4.18 Address Expressions 106
4.19 Floating Point 107

4.19.1 Floating-Point Numbers 109
4.19.2 Floating-Point Rounding 109
4.19.3 Flush to Zero (ftz) 110
4.19.4 Not A Number (NaN) 111

6 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 7

4.19.5 Floating Point Exceptions 112
4.19.6 Unit of Least Precision (ULP) 112

4.20 Dynamic Group Memory Allocation 112
4.21 Kernarg Segment 114

Chapter 5. Arithmetic Instructions 116
5.1 Overview of Arithmetic Instructions 116
5.2 Integer Arithmetic Instructions 116

5.2.1 Syntax 116
5.2.2 Description 118

5.3 Integer Optimization Instruction 121
5.3.1 Syntax 121
Description 121

5.4 24-Bit Integer Optimization Instructions 122
5.4.1 Syntax 122
Description 122

5.5 Integer Shift Instructions 123
5.5.1 Syntax 123
5.5.2 Description for Standard Form 124
5.5.3 Description for Packed Form 124

5.6 Individual Bit Instructions 125
5.6.1 Syntax 125
Description 125

5.7 Bit String Instructions 127
5.7.1 Syntax 127
Description 127

5.8 Copy (Move) Instructions 130
5.8.1 Syntax 130
Description 131
5.8.2 Additional Information About lda 132

5.9 Packed Data Instructions 133
5.9.1 Syntax 133
Description 134
5.9.2 Controls in src2 for shuffle Instruction 136
5.9.3 Common Uses for shuffle Instruction 137
5.9.4 Examples of unpacklo and unpackhi Instructions 139

5.10 Bit Conditional Move (cmov) Instruction 140
5.10.1 Syntax 140
Description 140

5.11 Floating-Point Arithmetic Instructions 140
5.11.1 Syntax 140
Description 142

5.12 Floating-Point Optimization Instruction 144
5.12.1 Syntax 144
Description 145

5.13 Floating-Point Bit Instructions 146
5.13.1 Syntax 146
Description 147

5.14 Native Floating-Point Instructions 148
5.14.1 Syntax 148
Description 149

5.15 Multimedia Instructions 150
5.15.1 Syntax 150
Description 150

Contents

Contents

5.16 Segment Checking (segmentp) Instruction 153
5.16.1 Syntax 153
Description 153

5.17 Segment Conversion Instructions 154
5.17.1 Syntax 154
Description 154

5.18 Compare (cmp) Instruction 155
5.18.1 Syntax 156
Description 157

5.19 Conversion (cvt) Instruction 159
5.19.1 Overview 159
5.19.2 Syntax 161
5.19.3 Rules for Rounding for Conversions 162
5.19.4 Description of Integer Rounding Modes 162
5.19.5 Description of Floating-Point Rounding Modes 164

Chapter 6. Memory Instructions 166
6.1 Memory and Addressing 166

6.1.1 How Addresses Are Formed 166
6.1.2 Memory Hierarchy 167
6.1.3 Alignment 168
6.1.4 Equivalence Classes 168

6.2 Memory Model 169
6.2.1 Memory Order 169
6.2.2 Memory Scope 170
6.2.3 Memory Synchronization Segments 170
6.2.4 Non-Memory Synchronization Segments 171
6.2.5 Agent Allocation 171
6.2.6 Course Grain Allocation 172
6.2.7 Kernel Dispatch Memory Synchronization 172
6.2.8 Execution Barrier 173
6.2.9 Flat Addresses 173

6.3 Load (ld) Instruction 173
6.3.1 Syntax 173
6.3.2 Description 174
6.3.3 Additional Information 176

6.4 Store (st) Instruction 177
6.4.1 Syntax 177
6.4.2 Description 178
6.4.3 Additional Information 179

6.5 Atomic Memory Instructions 180
6.6 Atomic (atomic) Instructions 181

6.6.1 Syntax 181
6.6.2 Description of Atomic and Atomic No Return Instructions 182

6.7 Atomic No Return (atomicnoret) Instructions 185
6.7.1 Syntax 185
6.7.2 Description 186

6.8 Notification (signal) Instructions 187
6.8.1 Syntax 188
6.8.2 Description of Signal Instructions 190

6.9 Memory Fence (memfence) Instruction 192
6.9.1 Syntax 192
6.9.2 Description 192

8 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 9

Chapter 7. Image Instructions 194
7.1 Images in HSAIL 194

7.1.1 Why Use Images? 194
7.1.2 Image Overview 195
7.1.3 Image Geometry 196
7.1.4 Image Format 198

7.1.4.1 Channel Order 198
7.1.4.1.1 x-Form Channel Orders 199
7.1.4.1.2 Standard RGB (s-Form) Channel Orders 200

7.1.4.2 Channel Type 200
7.1.4.3 Bits Per Pixel (bpp) 204

7.1.5 Image Access Permission 204
7.1.6 Image Coordinate 206

7.1.6.1 Coordinate Normalization Mode 206
7.1.6.2 Addressing Mode 207
7.1.6.3 Filter Mode 209

7.1.7 Image Creation and Image Handles 211
7.1.8 Sampler Creation and Sampler Handles 214
7.1.9 Using Image Instructions 216
7.1.10 Image Memory Model 218

7.2 Read Image (rdimage) Instruction 219
7.2.1 Syntax 219
Description 220

7.3 Load Image (ldimage) Instruction 221
7.3.1 Syntax 221
Description 222

7.4 Store Image (stimage) Instruction 222
7.4.1 Syntax 222
Description 223

7.5 Query Image and Query Sampler Instructions 224
7.5.1 Syntax 224
7.5.2 Description 224

7.6 Image Fence (imagefence) Instruction 225
7.6.1 Syntax 225
Description 226

Chapter 8. Branch Instructions 227
8.1 Syntax 227
8.2 Description 227

Chapter 9. Parallel Synchronization and Communication Instructions 229
9.1 Barrier Instructions 229

9.1.1 Syntax 229
9.1.2 Description 229

9.2 Fine-Grain Barrier (fbarrier) Instructions 230
9.2.1 Overview: What Is an Fbarrier? 230
9.2.2 Syntax 231
9.2.3 Description 231
9.2.4 Additional Information About Fbarrier Instructions 234
9.2.5 Pseudocode Examples 235

9.3 Execution Barrier 238
9.4 Cross-Lane Instructions 240

9.4.1 Syntax 240

Contents

Contents

9.4.2 Description 241

Chapter 10. Function Instructions 243
10.1 Functions in HSAIL 243

10.1.1 Example of a Simple Function 243
10.1.2 Example of a More Complex Function 243
10.1.3 Functions That Do Not Return a Result 244

10.2 Function Call Argument Passing 244
10.3 Function Declarations, Function Definitions, and Function Signatures 247

10.3.1 Function Declaration 247
10.3.2 Function Definition 247
10.3.3 Function Signature 248

10.4 Variadic Functions 248
10.5 align Qualifier 249
10.6 Direct Call (call) Instruction 250

10.6.1 Syntax 250
Description 250

10.7 Switch Call (scall) Instruction 251
10.7.1 Syntax 251
10.7.2 Description 251

10.8 Indirect Call (icall) Instruction 252
10.8.1 Syntax 253
10.8.2 Description 253

10.9 Return (ret) Instruction 254
10.9.1 Syntax 255
10.9.2 Description 255

10.10 Allocate Memory (alloca) Instruction 255
10.10.1 Syntax 255
10.10.2 Description 256

Chapter 11. Special Instructions 257
11.1 Kernel Dispatch Packet Instructions 257

11.1.1 Syntax 257
11.1.2 Description 258

11.2 Exception Instructions 260
11.2.1 Syntax 260
11.2.2 Description 261
11.2.3 Additional Information 261

11.3 User Mode Queue Instructions 262
11.3.1 Syntax 262
11.3.2 Description 263

11.4 Miscellaneous Instructions 264
11.4.1 Syntax 264
11.4.2 Description 265

Chapter 12. Exceptions 269
12.1 Kinds of Exceptions 269
12.2 Hardware Exceptions 269
12.3 Hardware Exception Policies 271
12.4 Debug Exceptions 272
12.5 Handling Signaled Exceptions 272

12.5.1 HSA Runtime Debug Interface Not Active 272
12.5.2 HSA Runtime Debug Interface Active 272

10 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 11

12.5.2.1 Sample Debug Interface 272

Chapter 13. Directives 274
13.1 extension Directive 274

13.1.1 extension CORE 274
13.1.2 extension IMAGE 274
13.1.3 How to Set Up Finalizer Extensions 275

13.2 loc Directive 276
13.3 pragma Directive 276
13.4 Control Directives for Low-Level Performance Tuning 278

Chapter 14. module Header 284
14.1 Syntax of the module Header 284

Chapter 15. Libraries 286
15.1 Library Restrictions 286
15.2 Library Example 286

Chapter 16. Profiles 288
16.1 What Are Profiles? 288
16.2 Profile-Specific Requirements 289

16.2.1 Base Profile Requirements 289
16.2.2 Full Profile Requirements 290

Chapter 17. Guidelines for Compiler Writers 292
17.1 Register Pressure 292
17.2 Using Lower-Precision Faster Instructions 292
17.3 Functions 292
17.4 Frequent Rounding Mode Changes 293
17.5 Wavefront Size 293
17.6 Control Flow Optimization 293
17.7 Memory Access 294
17.8 Unaligned Access 295
17.9 Constant Access 295
17.10 Segment Address Conversion 296
17.11 When to Use Flat Addressing 296
17.12 Arg Arguments 296
17.13 Exceptions 296

Chapter 18. BRIG: HSAIL Binary Format 298
18.1 What Is BRIG? 298
18.2 BRIG Module 299
18.3 Support Types 300

18.3.1 Section Offsets 300
18.3.2 BrigAlignment 301
18.3.3 BrigAllocation 301
18.3.4 BrigAluModifierMask 301
18.3.5 BrigAtomicOperation 302
18.3.6 BrigBase 302
18.3.7 BrigCompareOperation 302

Contents

Contents

18.3.8 BrigControlDirective 303
18.3.9 BrigExceptionsMask 303
18.3.10 BrigExecutableModifierMask 304
18.3.11 BrigImageChannelOrder 304
18.3.12 BrigImageChannelType 304
18.3.13 BrigImageGeometry 305
18.3.14 BrigImageQuery 305
18.3.15 BrigKind 305
18.3.16 BrigLinkage 306
18.3.17 BrigMachineModel 307
18.3.18 BrigMemoryModifierMask 307
18.3.19 BrigMemoryOrder 307
18.3.20 BrigMemoryScope 307
18.3.21 BrigModuleHeader 307
18.3.22 BrigOpcode 308
18.3.23 BrigPack 311
18.3.24 BrigProfile 311
18.3.25 BrigRegisterKind 311
18.3.26 BrigRound 311
18.3.27 BrigSamplerAddressing 312
18.3.28 BrigSamplerCoordNormalization 312
18.3.29 BrigSamplerFilter 313
18.3.30 BrigSamplerQuery 313
18.3.31 BrigSectionIndex 313
18.3.32 BrigSectionHeader 313
18.3.33 BrigSegCvtModifierMask 314
18.3.34 BrigSegment 314
18.3.35 BrigType 314
18.3.36 BrigUint64 317
18.3.37 BrigVariableModifierMask 317
18.3.38 BrigVersion 318
18.3.39 BrigWidth 318

18.4 hsa_data Section 319
18.5 hsa_code Section 320

18.5.1 Directive Entries 320
18.5.1.1 Declarations and Definitions in the Same Module 321
18.5.1.2 BrigDirectiveArgBlock 321
18.5.1.3 BrigDirectiveComment 321
18.5.1.4 BrigDirectiveControl 322
18.5.1.5 BrigDirectiveExecutable 322
18.5.1.6 BrigDirectiveExtension 324
18.5.1.7 BrigDirectiveFbarrier 324
18.5.1.8 BrigDirectiveLabel 325
18.5.1.9 BrigDirectiveLoc 325
18.5.1.10 BrigDirectiveModule 326
18.5.1.11 BrigDirectiveNone 326
18.5.1.12 BrigDirectivePragma 327
18.5.1.13 BrigDirectiveVariable 327

18.5.2 Instruction Entries 329
18.5.2.1 BrigInstBase 329
18.5.2.2 BrigInstAddr 330
18.5.2.3 BrigInstAtomic 330
18.5.2.4 BrigInstBasic 331
18.5.2.5 BrigInstBr 331
18.5.2.6 BrigInstCmp 332

12 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 13

18.5.2.7 BrigInstCvt 332
18.5.2.8 BrigInstImage 333
18.5.2.9 BrigInstLane 333
18.5.2.10 BrigInstMem 334
18.5.2.11 BrigInstMemFence 335
18.5.2.12 BrigInstMod 335
18.5.2.13 BrigInstQueryImage 336
18.5.2.14 BrigInstQuerySampler 336
18.5.2.15 BrigInstQueue 337
18.5.2.16 BrigInstSeg 337
18.5.2.17 BrigInstSegCvt 338
18.5.2.18 BrigInstSignal 338
18.5.2.19 BrigInstSourceType 338

18.6 hsa_operand Section 339
18.6.1 Constant Operands 340
18.6.2 BrigOperandAddress 341
18.6.3 BrigOperandAlign 341
18.6.4 BrigOperandCodeList 342
18.6.5 BrigOperandCodeRef 342
18.6.6 BrigOperandConstantBytes 343
18.6.7 BrigOperandConstantImage 344
18.6.8 BrigOperandConstantOperandList 345
18.6.9 BrigOperandConstantSampler 346
18.6.10 BrigOperandOperandList 346
18.6.11 BrigOperandRegister 347
18.6.12 BrigOperandString 347
18.6.13 BrigOperandWavesize 347

18.7 BRIG Syntax for Instructions 348
18.7.1 BRIG Syntax for Arithmetic Instructions 348

18.7.1.1 BRIG Syntax for Integer Arithmetic Instructions 348
18.7.1.2 BRIG Syntax for Integer Optimization Instruction 349
18.7.1.3 BRIG Syntax for 24-Bit Integer Optimization Instructions 349
18.7.1.4 BRIG Syntax for Integer Shift Instructions 349
18.7.1.5 BRIG Syntax for Individual Bit Instructions 349
18.7.1.6 BRIG Syntax for Bit String Instructions 350
18.7.1.7 BRIG Syntax for Copy (Move) Instructions 350
18.7.1.8 BRIG Syntax for Packed Data Instructions 350
18.7.1.9 BRIG Syntax for Bit Conditional Move (cmov) Instruction 351
18.7.1.10 BRIG Syntax for Floating-Point Arithmetic Instructions 351
18.7.1.11 BRIG Syntax for Floating-Point Optimization Instruction 352
18.7.1.12 BRIG Syntax for Floating-Point Bit Instructions 352
18.7.1.13 BRIG Syntax for Native Floating-Point Instructions 353
18.7.1.14 BRIG Syntax for Multimedia Instructions 353
18.7.1.15 BRIG Syntax for Segment Checking (segmentp) Instruction 353
18.7.1.16 BRIG Syntax for Segment Conversion Instructions 354
18.7.1.17 BRIG Syntax for Compare (cmp) Instruction 354
18.7.1.18 BRIG Syntax for Conversion (cvt) Instruction 354

18.7.2 BRIG Syntax for Memory Instructions 354
18.7.3 BRIG Syntax for Image Instructions 355
18.7.4 BRIG Syntax for Branch Instructions 356
18.7.5 BRIG Syntax for Parallel Synchronization and Communication Instructions 356
18.7.6 BRIG Syntax for Function Instructions 357
18.7.7 BRIG Syntax for Special Instructions 358

18.7.7.1 BRIG Syntax for Kernel Dispatch Packet Instructions 358
18.7.7.2 BRIG Syntax for Exception Instructions 358

Contents

Contents

18.7.7.3 BRIG Syntax for User Mode Queue Instructions 358
18.7.7.4 BRIG Syntax for Miscellaneous Instructions 359

Chapter 19. HSAIL Grammar in Extended Backus-Naur Form 360
19.1 HSAIL Lexical Grammar in Extended Backus-Naur Form (EBNF) 360
19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF) 361

Appendix A. Limits 374

Appendix B. Glossary of HSAIL Terms 376

Index 383

Figures

Figure 2–1 A Grid and Its Work-Groups and Work-Items 23
Figure 2–2 TOKEN_WAVESIZE Syntax Diagram 30
Figure 4–1 HSA Runtime Support for HSAIL Life Cycle 49
Figure 4–2 module Syntax Diagram 54
Figure 4–3 moduleHeader Syntax Diagram 54
Figure 4–4 profile Syntax Diagram 54
Figure 4–5 machineModel Syntax Diagram 54
Figure 4–6 defaultFloatRounding Syntax Diagram 55
Figure 4–7 moduleDirective Syntax Diagram 55
Figure 4–8 moduleStatement Syntax Diagram 55
Figure 4–9 annotations Syntax Diagram 56
Figure 4–10 annotation Syntax Diagram 56
Figure 4–11 TOKEN_COMMENT Syntax Diagram 56
Figure 4–12 kernel Syntax Diagram 57
Figure 4–13 kernelHeader Syntax Diagram 57
Figure 4–14 kernFormalArgumentList Syntax Diagram 58
Figure 4–15 kernFormalArgument Syntax Diagram 58
Figure 4–16 function Syntax Diagram 59
Figure 4–17 functionHeader Syntax Diagram 59
Figure 4–18 funcOutputFormalArgumentList Syntax Diagram 59
Figure 4–19 funcInputFormalArgumentList Syntax Diagram 59
Figure 4–20 funcFormalArgumentList Syntax Diagram 60
Figure 4–21 funcFormalArgument Syntax Diagram 60
Figure 4–22 signature Syntax Diagram 60
Figure 4–23 sigOutputFormalArgumentList 60
Figure 4–24 sigInputFormalArgumentList Syntax Diagram 60
Figure 4–25 sigFormalArgumentList Syntax Diagram 61
Figure 4–26 sigFormalArgument Syntax Diagram 61
Figure 4–27 codeBlock Syntax Diagram 61
Figure 4–28 codeBlockDirective Syntax Diagram 61
Figure 4–29 codeBlockDefinition 62
Figure 4–30 codeBlockStatement Syntax Diagram 62
Figure 4–31 argBlock Syntax Diagram 62
Figure 4–32 argBlockDefinition 63
Figure 4–33 argBlockStatement Syntax Diagram 63
Figure 4–34 moduleVariable Syntax Diagram 65
Figure 4–35 codeBlockVariable Syntax Diagram 65
Figure 4–36 argBlockVariable Syntax Diagram 65

14 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 15

Figure 4–37 variable Syntax Diagram 66
Figure 4–38 variableSegment Syntax Diagram 66
Figure 4–39 dataTypeMod Syntax Diagram 67
Figure 4–40 optArrayDimension Syntax Diagram 67
Figure 4–41 moduleFbarrier Syntax Diagram 68
Figure 4–42 codeBlockFbarrier Syntax Diagram 69
Figure 4–43 fbarrier Syntax Diagram 69
Figure 4–44 optDeclQual Syntax Diagram 69
Figure 4–45 declQual Syntax Diagram 69
Figure 4–46 linkageQual Syntax Diagram 69
Figure 4–47 optAlignQual Syntax Diagram 70
Figure 4–48 optAllocQual Syntax Diagram 70
Figure 4–49 optConstQual Syntax Diagram 70
Figure 4–50 TOKEN_STRING Syntax Diagram 76
Figure 4–51 TOKEN_GLOBAL_IDENTIFIER Syntax Diagram 77
Figure 4–52 TOKEN_LOCAL_IDENTIFIER Syntax Diagram 77
Figure 4–53 TOKEN_LABEL_IDENTIFIER Syntax Diagram 77
Figure 4–54 identifier Syntax Diagram 77
Figure 4–55 TOKEN_CREGISTER Syntax Diagram 79
Figure 4–56 TOKEN_SREGISTER Syntax Diagram 79
Figure 4–57 TOKEN_DREGISTER Syntax Diagram 79
Figure 4–58 TOKEN_QREGISTER Syntax Diagram 79
Figure 4–59 registerNumber Syntax Diagram 80
Figure 4–60 initializerConstant Syntax Diagram 81
Figure 4–61 immediateOperand Syntax Diagram 81
Figure 4–62 TOKEN_INTEGER_CONSTANT Syntax Diagram 82
Figure 4–63 decimalIntegerConstant Syntax Diagram 82
Figure 4–64 hexIntegerConstant Syntax Diagram 82
Figure 4–65 octalIntegerConstant Syntax Diagram 82
Figure 4–66 integerConstant Syntax Diagram 83
Figure 4–67 TOKEN_HALF_CONSTANT Syntax Diagram 83
Figure 4–68 TOKEN_SINGLE_CONSTANT Syntax Diagram 84
Figure 4–69 TOKEN_DOUBLE_CONSTANT Syntax Diagram 84
Figure 4–70 decimalFloatConstant Syntax Diagram 84
Figure 4–71 hexFloatConstant Syntax Diagram 84
Figure 4–72 ieeeHalfConstant Syntax Diagram 84
Figure 4–73 ieeeSingleConstant Syntax Diagram 84
Figure 4–74 ieeeDoubleConstant Syntax Diagram 85
Figure 4–75 floatConstant Syntax Diagram 85
Figure 4–76 halfConstant Syntax Diagram 86
Figure 4–77 singleConstant Syntax Diagram 86
Figure 4–78 doubleConstant Syntax Diagram 86
Figure 4–79 typedConstant Syntax Diagram 87
Figure 4–80 integerTypedConstant Syntax Diagram 88
Figure 4–81 floatTypedConstant Syntax Diagram 88
Figure 4–82 signalTypedConstant Syntax Diagram 88
Figure 4–83 arrayTypedConstant Syntax Diagram 89
Figure 4–84 integerArrayTypedConstant Syntax Diagram 89
Figure 4–85 halfArrayTypedConstant Syntax Diagram 90
Figure 4–86 singleArrayTypedConstant Syntax Diagram 90
Figure 4–87 doubleArrayTypedConstant Syntax Diagram 90
Figure 4–88 packedArrayTypedConstant Syntax Diagram 91
Figure 4–89 imageArrayTypedConstant Syntax Diagram 91
Figure 4–90 samplerArrayTypedConstant Syntax Diagram 91
Figure 4–91 signalArrayTypedConstant Syntax Diagram 91

Contents

Contents

Figure 4–92 aggregateConstant Syntax Diagram 91
Figure 4–93 aggregateConstantItem Syntax Diagram 92
Figure 4–94 aggregateConstantAlign Syntax Diagram 92
Figure 4–95 optInitializer Syntax Diagram 94
Figure 4–96 packedTypeConstant Syntax Diagram 103
Figure 5–1 Example of Broadcast 138
Figure 5–2 Example of Rotate 138
Figure 5–3 Example of Unpack 139
Figure 6–1 Memory Hierarchy 168
Figure 13–1 pragma Syntax Diagram 276
Figure 13–2 pragmaOperand Syntax Diagram 277

Tables

Table 2–1 Wavefront 0 Through 6 29
Table 2–2 Memory Segment Access Rules 36
Table 2–3 Machine Model Data Sizes 40
Table 4–1 Text Constants and Results of the Conversion 92
Table 4–2 Base Data Types 99
Table 4–3 Packed Data Types and Possible Lengths 100
Table 4–4 Opaque Data Types 101
Table 4–5 Packing Controls for Instructions With One Source Input 101
Table 4–6 Packing Controls for Instructions With Two Source Inputs 102
Table 5–1 Syntax for Integer Arithmetic Instructions 117
Table 5–2 Syntax for Packed Versions of Integer Arithmetic Instructions 117
Table 5–3 Syntax for Integer Optimization Instruction 121
Table 5–4 Syntax for 24-Bit Integer Optimization Instructions 122
Table 5–5 Syntax for Integer Shift Instructions 123
Table 5–6 Syntax for Individual Bit Instructions 125
Table 5–7 Inputs and Results for popcount Instruction 126
Table 5–8 Syntax for Bit String Instructions 127
Table 5–9 Inputs and Results for firstbit and lastbit Instructions 130
Table 5–10 Syntax for Copy (Move) Instructions 131
Table 5–11 Syntax for Shuffle and Interleave Instructions 133
Table 5–12 Syntax for Pack and Unpack Instructions 134
Table 5–13 Bit Selectors for shuffle instruction 136
Table 5–14 Syntax for Bit Conditional Move (cmov) Instruction 140
Table 5–15 Syntax for Floating-Point Arithmetic Instructions 141
Table 5–16 Syntax for Packed Versions of Floating-Point Arithmetic Instructions 141
Table 5–17 Syntax for Floating-Point Optimization Instruction 144
Table 5–18 Class Instruction Source Operand Condition Bits 146
Table 5–19 Syntax for Packed Versions of Floating-Point Bit Instructions 147
Table 5–20 Syntax for Native Floating-Point Instructions 148
Table 5–21 Syntax for Multimedia Instructions 150
Table 5–22 Syntax for Segment Checking (segmentp) Instruction 153
Table 5–23 Syntax for Segment Conversion Instructions 154
Table 5–24 Syntax for Compare (cmp) Instruction 156
Table 5–25 Syntax for Packed Version of Compare (cmp) Instruction 156
Table 5–26 Floating-Point Comparisons 158
Table 5–27 Conversion Methods 160
Table 5–28 Notation for Conversion Methods 160
Table 5–29 Syntax for Conversion (cvt) Instruction 161
Table 5–30 Rules for Rounding for Conversions 162
Table 5–31 Integer Rounding Modes 164
Table 6–1 Syntax for Load (ld) Instruction 174

16 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 17

Table 6–2 Syntax for Store (st) Instruction 177
Table 6–3 Syntax for Atomic Instructions 181
Table 6–4 Syntax for Atomic No Return Instructions 185
Table 6–5 Syntax for Signal Instructions 189
Table 6–6 Syntax for memfence Instruction 192
Table 7–1 Image Geometry Properties 196
Table 7–2 Channel Order Properties 199
Table 7–3 Channel Type Properties 201
Table 7–4 Channel Order, Channel Type, and Image Geometry Combination 205
Table 7–5 Image Handle Properties 212
Table 7–6 Image Instruction Combinations 216
Table 7–7 Syntax for Read Image Instruction 219
Table 7–8 Syntax for Load Image Instruction 221
Table 7–9 Syntax for Store Image Instruction 222
Table 7–10 Syntax for Query Image and Query Sampler Instructions 224
Table 7–11 Explanation of imageProperty modifier 224
Table 7–12 Explanation of samplerProperty modifier 225
Table 7–13 Syntax for imagefence Instruction 225
Table 8–1 Syntax for Branch Instructions 227
Table 9–1 Syntax for Barrier Instructions 229
Table 9–2 Syntax for fbar Instructions 231
Table 9–3 Syntax for Cross-Lane Instructions 240
Table 10–1 Syntax for direct call Instruction 250
Table 10–2 Syntax for switch call Instruction 251
Table 10–3 Syntax for indirect call Instruction 253
Table 10–4 Syntax for ret Instruction 255
Table 10–5 Syntax for Allocate Memory (alloca) Instruction 255
Table 11–1 Syntax for Kernel Dispatch Packet Instructions 257
Table 11–2 Syntax for Exception Instructions 260
Table 11–3 Syntax for Exception Instructions 262
Table 11–4 Syntax for Miscellaneous Instructions 265
Table 13–1 Control Directives for Low-Level Performance Tuning 278
Table 18–1 Formats of Directives in the hsa_code Section 321
Table 18–2 Formats of Instructions in the hsa_code Section 329
Table 18–3 Formats of Operands in the hsa_operand Section 339
Table 18–4 BRIG Syntax for Integer Arithmetic Instructions 348
Table 18–5 BRIG Syntax for Integer Optimization Instruction 349
Table 18–6 BRIG Syntax for 24-Bit Integer Optimization Instructions 349
Table 18–7 BRIG Syntax for Integer Optimization Instructions 349
Table 18–8 BRIG Syntax for Individual Bit Instructions 349
Table 18–9 BRIG Syntax for Bit String Instructions 350
Table 18–10 BRIG Syntax for Copy (Move) Instructions 350
Table 18–11 BRIG Syntax for Packed Data Instructions 350
Table 18–12 BRIG Syntax for Bit Conditional Move (cmov) Instruction 351
Table 18–13 BRIG Syntax for Floating-Point Arithmetic Instructions 351
Table 18–14 BRIG Syntax for Floating-Point Optimization Instruction 352
Table 18–15 BRIG Syntax for Floating-Point Classify (class) Instructions 352
Table 18–16 BRIG Syntax for Native Floating-Point Instructions 353
Table 18–17 BRIG Syntax for Multimedia Instructions 353
Table 18–18 BRIG Syntax for Segment Checking (segmentp) Instruction 353
Table 18–19 BRIG Syntax for Segment Conversion Instructions 354
Table 18–20 BRIG Syntax for Compare (cmp) Instruction 354
Table 18–21 BRIG Syntax for Conversion (cvt) Instruction 354
Table 18–22 BRIG Syntax for Memory Instructions 354
Table 18–23 BRIG Syntax for Image Instructions 355

Contents

Contents

Table 18–24 BRIG Syntax for Branch Instructions 356
Table 18–25 BRIG Syntax for Parallel Synchronization and Communication Instructions 356
Table 18–26 BRIG Syntax for Instructions Related to Functions 357
Table 18–27 BRIG Syntax for Kernel Dispatch Packet Instructions 358
Table 18–28 BRIG Syntax for Exception Instructions 358
Table 18–29 BRIG Syntax for User Mode Queue Instructions 358
Table 18–30 BRIG Syntax for Miscellaneous Instructions 359

18 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 19

About the HSA Programmer's Reference Manual
This document describes the Heterogeneous System Architecture Intermediate Language (HSAIL), which is
a virtual machine and an intermediate language.

This document serves as the specification for the HSAIL language for HSA implementers. Note that there
are a wide variety of methods for implementing these requirements.

Audience
This document is written for developers involved in developing an HSA implementation.

Document Conventions

Convention Description

Boldface In syntax tables, indicates a required item.

Italics In text, indicates the name of a document or a new term that is described in the Appendix B.
Glossary of HSAIL Terms (page 376). In syntax tables, indicates a variable representation of a modifier
or operand.

Monospace
text

Indicates actual syntax.

n Indicates the generic use of a number.

HSA Information Sources
l HSA Platform System Architecture Specification Version 1.0 describes the HSA system architecture.

l HSA Runtime Programmer’s Reference Manual Version 1.0 describes the HSA runtime.

l The OpenCL Specification Version 2.0 describes the OpenCL C language and runtime API:
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

l IEEE Standard for Floating-Point Arithmetic Version IEEE/ANSI Standard 754-2008 describes the
IEEE/ANSI Standard 754-2008 floating-point standard.

l Jean-Michel Muller. On the definition of ulp(x). RR-5504, 2005, pp.16.: https://hal.inria.fr/inria-
00070503

About the HSA Programmer's ReferenceManual Audience

http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://hal.inria.fr/inria-00070503
https://hal.inria.fr/inria-00070503

Chapter 1. Overview 1.1 What Is HSAIL?

CHAPTER 1.
Overview

This chapter provides an overview of Heterogeneous System Architecture Intermediate Language (HSAIL).

1.1 What Is HSAIL?
The Heterogeneous System Architecture (HSA) is designed to efficiently support a wide assortment of data-
parallel and task-parallel programming models. A single HSA system can support multiple instruction sets
based on CPU(s), GPU(s), and specialized processor(s).

HSA supports two machine models: large mode (64-bit address space) and small mode (32-bit address
space).

Programmers normally build code for HSA in a virtual machine and intermediate language called HSAIL
(Heterogeneous System Architecture Intermediate Language). Using HSAIL allows a single program to
execute on a wide range of platforms, because the native instruction set has been abstracted away.

HSAIL is required for parallel computing on an HSA platform.

This manual describes the HSAIL virtual machine and the HSAIL intermediate language.

An HSA implementation consists of:

l Hardware components that execute one or more machine instruction set architectures (ISAs).
Supporting multiple ISAs is a key component of HSA.

l An HSA runtime that is a library of services that supports the execution of HSAIL programs including
a finalizer and a loader:

o A finalizer translates HSAIL code into the appropriate native machine code if the hardware
components cannot support HSAIL natively.

o A loader loads native executable code onto hardware components.

Each implementation is able to execute the same HSAIL virtual machine and language, though different
implementations might run at different speeds.

A device that participates in the HSA memory model is called an agent.

An HSAIL virtual machine consists of multiple agents including at least one host CPU and one kernel agent:

l A host CPU is an agent that also supports the native CPU instruction set and runs the host operating
system and the HSA runtime. As an agent, the host CPU can dispatch commands to an kernel agent
using memory instructions to construct and enqueue Architected Queuing Language (AQL) packets on
User Mode Queues associated with the kernel agent. In some systems, a host CPU can also act as a
kernel agent (with appropriate HSAIL finalizer and AQL mechanisms).

l A kernel agent is an agent that supports the HSAIL instruction set and includes a packet processor
that supports the AQL packet format including the kernel dispatch packet. As an agent, a kernel
agent can dispatch commands to any kernel agent (including itself) using memory instructions to
construct and enqueue AQL packets on User Mode Queues associated with the kernel agent.

20 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 21

l Other agents that can participate in the HSA memory model. These include dedicated hardware to
perform specialized tasks such as video encoding and decoding.

A kernel agent does not need to execute HSAIL code directly: it can execute machine code generated from
HSAIL code by a finalizer provided by the runtime. Different implementations can choose to invoke the
finalizer at various times: statically at the same time the application is built, when the application is installed,
when it is loaded, or even during execution.

An HSA-enabled application is an amalgam of both of the following:

l Code that can execute only on host CPUs

l HSAIL code, which can execute only on kernel agents

Certain sections of code, called kernels, are executed in a data-parallel way by kernel agents. Kernels are
written in HSAIL and then separately translated (statically, at install time, at load time, or dynamically) by a
finalizer to the target instruction set.

A kernel does not return a value.

HSAIL supports two machine models:

l Large mode (global addresses are 64 bits)

l Small mode (global addresses are 32 bits)

For more information, see 2.9. Small and Large Machine Models (page 39).

1.2 HSAIL Virtual Language
HSAIL is designed for parallel processing. The HSAIL virtual instruction set can be translated into many
native instruction sets. Internally, each implementation of HSA might be quite different, yet all
implementations will run any program written in HSAIL, provided it supports the profile used. See Chapter
16. Profiles (page 288). HSAIL has no explicit parallel constructs; instead, each kernel contains instructions
for a single work-item.

When the kernel starts, a multidimensional cube-shaped grid is defined and one work-item is launched for
each point in the grid. A typical grid will be large, so a single kernel might launch thousands of work-items.
Each launched work-item executes the same kernel code, but might take different control flow paths.
Execution of the kernel is complete when all work-items of the grid have been launched and have completed
their execution.

Work-items are extremely lightweight; the overhead of context switching among work-items is low.

An HSAIL program looks like a simple assembly language program for a RISC machine, with text written as a
sequence of characters.

See Chapter 3. Examples of HSAIL Programs (page 46).

Most lines of source text contain instructions made up of an opcode with a set of suffixes specifying data
type, length, and other attributes. Instructions in HSAIL are simple three-operand, RISC-like constructs.
There are also assorted pseudo-instructions used to declare variables.

All mathematical instructions are register-to-register only. For example, to multiply two numbers, the values
are loaded into registers and one of the multiply instructions (mul_s32, mul_u32, mul_s64, mul_u64,
mul_f32, or mul_f64) is used.

Chapter 1. Overview 1.2 HSAIL Virtual Language

Chapter 1. Overview 1.3 HSAIL Experimental Features

Each HSAIL program has its own set of resources. For example, each work-item has a private set of
registers.

HSA has a unified memory model, where all HSAIL work-items and agents can use the same pointers, and a
pointer can address any kind of HSA memory. Programmers are relieved of much of the burden of memory
management. The HSA system determines if a load or store address should be visible to all agents in the
system (global memory), visible only to work-items in a group (group memory), or private to a work-item
(private memory). The same pointer can be used by all agents in the system including all host CPUs and all
kernel agents. Global memory (but not group memory or private memory) is coherent between all agents.

1.3 HSAIL Experimental Features
A few features in HSAIL are qualified as experimental. A future version of the specification may modify the
feature in a non-backwards compatible way, may replace the feature with a different feature that serves
similar goals, or may deprecate the feature completely. Experimental features are present as the
functionality provided is considered potentially useful, although the exact form is not mature and still under
development. A user should consider carefully whether to use these features as a future version of the
specification may require changes to HSAIL source to continue executing correctly. Feedback on these
features is solicited.

22 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 23

CHAPTER 2.
HSAIL Programming Model

This chapter describes the HSAIL programming model.

2.1 Overview of Grids, Work-Groups, and Work-Items
The figure below shows a graphical view of the concepts that affect an HSAIL implementation.

Figure 2–1 A Grid and Its Work-Groups and Work-Items

Programmers, compilers, and tools identify a portion of an application that is executed many times, but
independently on different data. They can structure that code into a kernel that will be executed by many
different work-items.

Chapter 2. HSAILProgramming Model 2.1 Overviewof Grids,Work-Groups, andWork-Items

Chapter 2. HSAILProgramming Model 2.1 Overviewof Grids,Work-Groups, andWork-Items

The kernel language runtime can be used to invoke the kernel language compiler that will produce HSAIL.
The HSA runtime can then be used by the language runtime to execute the finalizer for the kernel agent that
will execute the kernel. The finalizer takes the HSAIL represented in the binary BRIG format and produces an
HSA code object that contains the kernel native machine code that will execute on that kernel agent. The
finalizer can either be executed “online” as part of the application that will execute the kernel, or as part of
an “offline” tool that saves the HSA code objects for later execution by other applications.

If the HSAIL requires more resources than are available on the kernel agent, the finalizer will return a failure
result. For example, the kernel might require more group memory, or more fbarriers than are available on
the kernel agent.

The kernel language runtime can use the HSA runtime loader to load HSA code objects onto kernel agents
that have a matching native instruction set architecture. The loader can be used to obtain the information
required to create AQL kernel dispatch packets used to execute the kernels contained in the loaded HSA
code objects.

A kernel agent can have multiple User Mode Queues associated with it. Each User Mode Queue has a queue
ID, which is unique across all the User Mode Queues created by the process executing the application.

A request to execute a kernel is made by appending an AQL kernel dispatch packet on a User Mode Queue
associated with a kernel agent. Each AQL packet is assigned a packet ID that is unique for each User Mode
Queue.

An HSA implementation ensures that all User Mode Queues are serviced and dispatches the kernel
executable code associated with the queued kernel dispatch packets on the kernel agent with which the
User Mode Queue is associated, causing the kernel to be executed.

If the kernel agent has insufficient resources to execute at least one work-group of a kernel dispatch, then
the dispatch fails, and the HSA runtime transitions the User Mode Queue into the error state. No kernel
execution occurs, and the kernel dispatch packet completion signal is not updated. For example, the
dispatch might request more dynamic group memory than is available. A dispatch may, but is not required
to, fail if the dispatch arguments are not compatible with any control directives specified when the kernel
was finalized. For example, the dispatch work-group size might not match the values specified by a
requiredworkgroupsize control directive.

The combination of the packet ID and the queue ID can be used to identify a kernel dispatch within the
application. A kernel can access these IDs by means of the packetid special instruction and by using
memory instructions to access the id field of the User Mode Queue memory structure. See 11.1. Kernel
Dispatch Packet Instructions (page 257) and the HSA Platform System Architecture Specification Version 1.0
section 2.8 Requirement: User Mode Queuing.

The dispatch forms a grid. The grid can be composed of one, two, or three dimensions. The dimension
components are referred to as X, Y, and Z. If the grid has one dimension, then it has only an X component, if
it has two dimensions, then it has X and Y components, and if it has three dimensions, then it has X, Y, and Z
components.

A grid is a collection of work-items. See 2.3. Work-Items (page 26).

The work-items in the grid are partitioned into work-groups that have the same number of dimensions as
the grid. See 2.2. Work-Groups (facing page).

A work-group is an instance of execution on the kernel agent. Execution is performed by a compute unit. A
kernel agent can have one or more compute units.

24 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 25

When a kernel is dispatched, the number of dimensions of the grid (which is also the number of dimensions
of the work-group), the size of each grid dimension, the size of each work-group dimension, and the kernel
argument values must be specified. If the number of dimensions specified for a kernel dispatch is 1, then
the Y and Z components for the grid and work-group size must be specified as 1; if the number of
dimensions specified for a kernel dispatch is 2, then the Z component for the grid and work-group size must
be specified as 1; all other grid and work-group size components must be non-0.

As execution proceeds, the work-groups in the grid are distributed to compute units. All work-items of a
work-group are executed on the same compute unit at the same time, each work-item running the kernel.
Execution can be either concurrent, or through some form of scheduling. See 2.6. Wavefronts, Lanes, and
Wavefront Sizes (page 29).

The size of each grid dimension is not required to be an integral multiple of the size of the corresponding
work-group dimension, so the grid might contain partial work-groups. In a partial work-group, only some of
the work-items are valid. The compute unit will only execute the valid work-items in a partial work-group.

A compute unit may execute multiple work-groups at the same time. The resources used by a work-group
(such as group memory, barrier and fbarrier resources, and number of wavefronts that can be scheduled)
and work-items within the work-group (such as registers) may limit the number of work-groups that a
compute unit can execute at the same time. However, a compute unit must be able to execute at least one
work-group. If a kernel agent has more than one compute unit, different work-groups may execute on
different compute units.

In the figure, the grid is composed of 24 work-groups. (Dimension X = 2, dimension Y = 4, and dimension Z =
3.)

In the figure, each work-group is a three-dimensional work-group, and each work-group is composed of 105
work-items. (Dimension X = 7, dimension Y = 5, and dimension Z = 3.)

For information about wavefronts, see 2.6. Wavefronts, Lanes, and Wavefront Sizes (page 29).

2.2 Work-Groups
A work-group is an instance of execution in a compute unit. A compute unit must have enough resources to
execute at least one work-group at a time. Thus, it is not possible for a compute unit to be too small.

Assorted synchronization instructions can be used to control communication within a work-group. For
example, it is possible to mark barrier synchronization points where work-items wait until other work-items
in the work-group have arrived.

All implementations can execute at least the number of work-items in a work-group such that they are all
guaranteed to make forward progress in the presence of work-group barriers.

Implementations that provide multiple compute units or more capable compute units can execute multiple
work-groups simultaneously.

2.2.1 Work-Group ID

Every work-group has a multidimensional identifier containing up to three integer values (for the three
dimensions) called the work-group ID. The work-group ID is calculated by dividing each component of the
work-item absolute ID by the corresponding work-group size component and ignoring the remainder. See
2.3.3. Work-Item Absolute ID (page 27).

Work-group size is the product of the three dimensions:

work-group size = workgroupsize
0
* workgroupsize

1
* workgroupsize

2

Chapter 2. HSAILProgramming Model 2.2 Work-Groups

Chapter 2. HSAILProgramming Model 2.3 Work-Items

Each work-group can access assorted predefined read-only values such as work-group ID, work-group size,
and so forth through the use of dispatch packet instructions. See 11.1. Kernel Dispatch Packet Instructions
(page 257).

The value of the work-group ID is returned by the workgroupid instruction.

The size of the work-group specified when the kernel was dispatched is returned by the workgroupsize
instruction.

Because the size of each grid dimension is not required to be an integral multiple of the size of the
corresponding work-group dimension, there can be partial work-groups. The currentworkgroupsize
instruction returns the work-group size that the current work-item belongs to. The value returned by this
instruction will only be different from that returned by workgroupsize instruction if the current work-item
belongs to a partial work-group.

2.2.2 Work-Group Flattened ID

Each work-group has a work-group flattened ID.

The work-group flattened ID is defined as:

work-group flattened ID = workgroupid
0
+

workgroupid
1
* workgroupsize

0
+

workgroupid
2
* workgroupsize

0
* workgroupsize

1

HSAIL implementations need to ensure forward progress. That is, any program can count on one-way
communication and later work-groups (in work-group flattened ID order) can wait for values written by
earlier work-groups without deadlock.

2.3 Work-Items
Each work-item has its own set of registers, has private memory, and can access assorted predefined read-
only values such as work-item ID, work-group ID, and so forth through the use of special instructions. See
Chapter 11. Special Instructions (page 257).

To access private memory, work-items use regular loads and stores, and the HSA hardware will examine
addresses and detect the ranges that are private to the work-item. One of the system-generated values tells
the work-item the address range for private data.

Work-items are able to share data with other work-items in the same work-group through a memory
segment called the group segment. Memory in a group segment is accessed using loads and stores. This
memory is not accessible outside its associated work-group (that is, it is not seen by other work-groups or
agents). See 2.8. Segments (page 31).

2.3.1 Work-Item ID

Each work-item has a multidimensional identifier containing up to three integer values (for the three
dimensions) within the work-group called the work-item ID.

max is the size of the work-group or 1.

For each dimension i, the set of values of ID
i
is the dense set [0, 1, 2, ... max

i
− 1].

The value of max
i
can be accessed by means of the special instruction workgroupsize.

The work-item ID can be accessed by means of the special instruction workitemid.

26 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 27

2.3.2 Work-Item Flattened ID and Current Work-Item Flattened ID

The work-item ID can be flattened into one dimension, which is relative to the containing work-group. This is
called the work-item flattened ID.

The work-item flattened ID is defined as:

work-item flattened ID = ID
0
+ ID

1
* max

0
+ ID

2
* max

0
* max

1

where:

ID
0
= workitemid (dimension 0)

ID
1
= workitemid (dimension 1)

ID
2
= workitemid (dimension 2)

max
0
= workgroupsize (dimension 0)

max
1
= workgroupsize (dimension 1)

The work-item flattened ID can be accessed by means of the special instruction workitemflatid.

Note that the set of values produced by work-item flattened ID for each work-item of a partial work-group
(see 2.1. Overview of Grids, Work-Groups, and Work-Items (page 23)) is not dense since it is computed using
workgroupsize, which applies only to non-partial work-groups.

However, the work-item ID can also be flattened into one dimension using currentworkgroupsize.

The current work-item flattened ID is defined as:

current work-item flattened ID = ID
0
+ ID

1
* current_max

0
+ ID

2
* current_max

0
* current_max

1

where:

ID
0
= workitemid (dimension 0)

ID
1
= workitemid (dimension 1)

ID
2
= workitemid (dimension 2)

current_max
0
= currentworkgroupsize (dimension 0)

current_max
1
= currentworkgroupsize (dimension 1)

Note that the set of values produced by current work-item flattened ID for each work-item of a work-group is
always dense, even when it is a partial work-group.

The current work-item flattened ID can be accessed by means of the special instruction
currentworkitemflatid. The value returned by this instruction will only be different from that
returned by the workitemflatid instruction if the current work-item belongs to a partial work-group.

2.3.3 Work-Item Absolute ID

Each work-item has a unique multidimensional identifier containing up to three integer values (for the three
dimensions) called the work-item absolute ID. The work-item absolute ID is unique within the grid.

Programs can use the work-item absolute IDs to partition data input and work across the work-items.

For each dimension i, the set of values of absolute ID
i
are the dense set [0, 1, 2, ... max

i
− 1].

The value of max
i
can be accessed by means of the special instruction gridsize.

The work-item absolute ID can be accessed by means of the special instruction workitemabsid.

2.3.4 Work-Item Flattened Absolute ID

The work-item absolute ID can be flattened into one dimension into an identifier called the work-item
flattened absolute ID. The work-item flattened absolute ID enumerates all the work-items in a grid.

The work-item flattened absolute ID is defined as:

work-item flattened absolute ID = ID
0
+ ID

1
* max

0
+ ID

2
* max

0
* max

1

Chapter 2. HSAILProgramming Model 2.3 Work-Items

Chapter 2. HSAILProgramming Model 2.4 Scalable Data-Parallel Computing

where:

ID
0
= workitemabsid (dimension 0)

ID
1
= workitemabsid (dimension 1)

ID
2
= workitemabsid (dimension 2)

max
0
= gridsize (dimension 0)

max
1
= gridsize (dimension 1)

The work-item flattened absolute ID can be accessed by means of the special instruction
workitemflatabsid.

2.4 Scalable Data-Parallel Computing
For CPU developers, the idea of work-items and work-groups might seem odd, because one level of threads
has traditionally been enough.

Work-items are similar in some ways to traditional CPU threads, because they have local data and a
program counter. But they differ in a couple of important ways:

l Work-items can be gang-scheduled while CPU threads are scheduled separately.

l Work-items are extremely lightweight. Thus, a context change between two work-items is not a costly
operation.

The number of work-groups that can be processed at once is dependent on the amount of hardware
resources. Adding work-groups makes it possible to abstract away this concept so that developers can apply
a kernel to a large grid without worrying about fixed resources. If hardware has few resources, it executes
the work-groups sequentially. But if it has a large number of compute units, it can process them in parallel.

2.5 Active Work-Groups and Active Work-Items
At any instance of time, the work-groups executing in compute units are called the active work-groups. When
a work-group finishes execution, it stops being active and another work-group can start. The work-items in
the active work-groups are called active work-items. Resource limits, including group memory, can constrain
the number of active work-groups.

An active work-item at an instruction is one that executes the current instruction. For example:

if (condition) {
instruction;

}

The active work-items at this instruction are the work-items where condition was true.

Resource limits might constrain the number of active work-items. However, every HSAIL implementation
must be able to support enough active work-items to be able to execute at least one maximum-size work-
group. Resources such as private memory and registers are not persistent over work-items, so
implementations are allowed to reuse resources. When a work-group finishes, it and all its work-items stop
being active and the resources they used (private memory, registers, group memory, hardware resources
used to implement barriers, and so forth) might be reassigned.

Work-group (i +j) might start after work-group (i) finishes, so it is not valid for a work-group to wait on an
instruction performed by a later work-group.

When a work-group finishes, the associated resources become free so that another work-group can start.

28 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 29

2.6 Wavefronts, Lanes, and Wavefront Sizes
Work-items within a work-group can be executed in an extended SIMD (single instruction, multiple data)
style. That is, work-items are gang-scheduled in chunks called wavefronts. Executing work-items in
wavefronts can allow implementations to improve computational density.

Work-items in a work-group are assigned to wavefronts consecutively in current work-item flattened ID
order. This can be useful to expert programmers. See 2.3.2. Work-Item Flattened ID and Current Work-Item
Flattened ID (page 27)).

A lane is an element of a wavefront. The wavefront size is the number of lanes in a wavefront. Wavefront size
is an implementation defined constant, and must be a power of 2 in the range from 1 to 256 inclusive. Thus,
a wavefront with a wavefront size of 64 has 64 lanes.

A lane has an identifier unique within the wavefront which can be accessed by means of the laneid
instruction which is defined as:

current work-item flattened ID % wavefront size

If the current work-group size is not a multiple of the wavefront size, the last wavefront will have trailing
lanes that do not contribute to the computation.

Note that partial work-groups may have fewer wavefronts than non-partial work-groups. See 2.1. Overview
of Grids, Work-Groups, and Work-Items (page 23).

Two work-items in the same work-group will be in the same wavefront if the floor of current work-
item flattened ID / wavefront size is the same.

2.6.1 Example of Contents of a Wavefront

Assume that the work-group size is 13 (X dimension) by 3 (Y dimension) by 11 (Z dimension) and the
wavefront size is 64. Thus, a work-group would need 13 * 3 * 11 = 429 work-items. The number of work-
items divided by 64 = 6 with a remainder of 45.

Six wavefronts (wavefronts 0, 1, 2, 3, 4, and 5) would hold 384 work-items. The remaining 45 work-items
would be in the seventh wavefront (wavefront 6), which would be partially filled.

See the tables below.

Table 2–1 Wavefront 0 Through 6

Wavefront 0

Dimensions X, Y, Z 0-12, 0, 0 0-12, 1, 0 0-12, 2, 0 0-12, 0, 1 0-11, 1, 1

Work-Item Absolute Flattened IDs 0-12 13-25 26-38 39-51 52-63

Lane IDs 0-12 13-25 26-38 39-51 52-63

Wavefront 1

Dimensions X, Y, Z 12, 1, 1 0-12, 2, 1 0-12, 0, 2 0-12, 1, 2 0-12, 2, 2 0-10, 0, 3

Work-Item Absolute Flattened IDs 64 65-77 78-90 91-103 104-116 117-127

Lane IDs 0 1-13 14-26 27-39 40-52 53-63

Wavefront 2

Dimensions X, Y, Z 11-12, 0, 3 0-12, 1, 3 0-12, 2, 3 0-12, 0, 4 0-12, 1, 4 0-9, 2, 4

Work-Item Absolute Flattened IDs 128-129 130-142 143-155 156-168 169-181 182-191

Lane IDs 0-1 2-14 15-27 28-40 41-53 54-63

Chapter 2. HSAILProgramming Model 2.6 Wavefronts, Lanes, andWavefront Sizes

Chapter 2. HSAILProgramming Model 2.7 Types of Memory

Wavefront 3

Dimensions X, Y, Z 10-12, 2, 4 0-12, 0, 5 0-12, 1, 5 0-12, 2, 5 0-12, 0, 6 0-8, 2, 4

Work-Item Absolute Flattened IDs 192-194 195-207 208-220 221-233 234-246 247-255

Lane IDs 0-2 3-15 16-28 29-41 42-54 55-63

Wavefront 4

Dimensions X, Y, Z 9-12, 1, 6 0-12, 2, 6 0-12, 0, 7 0-12, 1, 7 0-12, 2, 7 0-7, 0, 8

Work-Item Absolute Flattened IDs 256-259 260-272 273-285 286-298 299-311 312-319

Lane IDs 0-3 4-16 17-29 30-42 43-55 56-63

Wavefront 5

Dimensions X, Y, Z 8-12, 0, 8 0-12, 1, 8 0-12, 2, 8 0-12, 0, 9 0-12, 1, 9 0-6, 2, 9

Work-Item Absolute Flattened IDs 320-324 325-337 338-350 351-363 364-376 377-383

Lane IDs 0-4 5-17 18-30 31-43 44-56 57-63

Wavefront 6

Dimensions X, Y, Z 7-12, 2, 9 0-12, 0, 10 0-12, 1, 10 0-12, 2, 10

Work-Item Absolute Flattened IDs 384-389 390-402 403-415 416-428

Lane IDs 0-5 6-18 19-31 32-44

The rest of wavefront 6 is unused.

2.6.2 Wavefront Size

Figure 2–2 TOKEN_WAVESIZE Syntax Diagram

On some implementations, a kernel might be more efficient if it is written with knowledge of the wavefront
size. Thus, HSAIL includes a compile-time macro, WAVESIZE. This can be used in any instruction operand
where an integer, bit, or packed immediate value less than or equal to 64 bits is allowed, and as the
argument to the width modifier. It is not supported for directive operands unless indicated otherwise. See
2.12. Divergent Control Flow (page 41).

WAVESIZE is only available inside the HSAIL code.

In Extended Backus-Naur Form, WAVESIZE is called TOKEN_WAVESIZE.

Developers need to be careful about wavefront size assumptions, because programs coded for a single
wavefront size could generate wrong answers or deadlock if the code is executed on implementations with
a different wavefront size.

The grid size does not need to be an integral multiple of the wavefront size.

2.7 Types of Memory
HSAIL memory is organized into three types:

30 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 31

l Flat memory

Flat memory is a simple interface using byte addresses. Loads and stores can be used to reference
any visible location in the flat memory.

For more information, see 2.8. Segments (below).

l Registers

There are four register sizes:

o 1-bit

o 32-bit

o 64-bit

o 128-bit

Registers are untyped.

For more information, see 4.7. Registers (page 79).

l Image memory

Image memory is a special kind of memory access that can make use of dedicated hardware often
provided for graphics. Only programmers seeking extreme performance need to understand image
memory.

For more information, see Chapter 7. Image Instructions (page 194).

All HSAIL implementations support all three types of memory.

2.8 Segments
Flat memory is divided into segments based on:

l The way data can be shared

l The intended usage

A segment is a block of memory. The characteristics of a segment space include its size, addressability,
access speed, access rights, and level of sharing between both work-items executed by kernel agents and
threads executed by other agents.

The segment determines the part of memory that will hold the object, how long the storage allocation exists,
and the properties of the memory. The finalizer uses the segment to determine the intended usage of the
memory.

No access protection between segments is provided. That is, the behavior is undefined when memory
instructions generate addresses that are outside the bounds of a segment.

No isolation guarantee between segments is provided. See 2.8.5. Memory Segment Isolation (page 39).

2.8.1 Types of Segments

There are seven types of segments:

l Global

The global segment can be used to hold variables that are shared by all agents.

Chapter 2. HSAILProgramming Model 2.8 Segments

Chapter 2. HSAILProgramming Model 2.8 Segments

Global segment variables can either have program or agent allocation. See the alloc qualifier
description in 4.3.10. Declaration and Definition Qualifiers (page 69).

o Global memory variables with program allocation have a single allocation for the variable
which is visible to all agents, including all kernel agents executing an application. The address
of the variable allocation in global memory can be read and written by any agent, including
any work-item of any kernel dispatch executed by any kernel agent.

o Global memory variables with agent allocation have multiple allocations, one for each kernel
agent on which code is loaded that accesses the variable. Each allocation has a distinct global
segment address and is only visible to the associated kernel agent. The address of each
variable allocation in global memory can only be read and written by work-items of any kernel
dispatch executed by the associated kernel agent. In addition, the host CPU agent can access
all allocations by using the HSA runtime and specifying the kernel agent.

The visibility of global memory is further constrained by the memory model (see 6.2. Memory Model
(page 169)). For a description of the visibility of variable initializers, see 4.10. Variable Initializers
(page 94).

All global memory is persistent across the application execution.

Global memory can be set before the execution of a kernel dispatch, either explicitly by HSAIL
variable definition initializers, by the HSA runtime variable definition API, by the execution of other
kernel dispatches, by the application executing on a host CPU agent, or by other agents.

Global segment variables can be marked const in which case their value must not be changed for
their storage duration after they have been allocated and initialized. A const variable HSAIL
definition must have an initializer. A non-const HSAIL variable definition can optionally have an
initializer. See 4.3.10. Declaration and Definition Qualifiers (page 69).

Standard page protections (for example, read-only, read-write, and protected) apply to global
memory. See the HSA Platform System Architecture Specification Version 1.0 section 2.1 Requirement:
Shared Virtual Memory.

Global memory can be accessed using a flat address that is not in the range reserved for the group
or private memory.

l Group

The group segment is used to hold variables that are shared by the work-items of a work-group.

Group memory is visible to the work-items of a single work-group of a kernel dispatch. An address of
a variable in group memory can be read and written by any work-item in the work-group with which it
is associated, but not by work-items in other work-groups or by other agents. Visibility of group
memory is further constrained by the memory model. See 6.2. Memory Model (page 169).

Group memory is persistent across the execution of the work-items in the work-group of the kernel
dispatch with which it is associated.

Group memory is uninitialized when the work-group starts execution.

One specific implementation defined range of flat addresses is reserved for group memory. See
2.8.3. Addressing for Segments (page 35).

32 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 33

l Private

The private segment can be used to hold variables that are local to a single work-item.

Private memory is visible only to a single work-item of a kernel dispatch. An address of a variable in
private memory can be read and written only by the work-item with which it is associated, but not by
any other work-items or other agents.

Private memory is persistent across the execution of the work-item with which it is associated.

Private memory is uninitialized when the work-item starts.

One specific implementation defined range of flat addresses is reserved for private memory. See
2.8.3. Addressing for Segments (page 35).

l Kernarg

Read-only memory is used to pass arguments into a kernel.

Kernarg memory is visible to all work-items of the kernel dispatch with which it is associated. An
address of a variable in kernarg memory can be read by any work-item in the kernel dispatch with
which it is associated, but not by work-items in other kernel dispatches. Other agents must not
modify the kernarg memory while the kernel dispatch it is associated with is executing.

Kernarg memory is persistent across the execution of the kernel dispatch with which it is associated.

Kernarg memory is initialized to the values specified by the agent that dispatches the kernel.

Kernarg memory cannot be accessed using a flat address.

l Readonly

The readonly segment can be used to hold variables that remain constant during the execution of a
kernel dispatch. However, the values can be changed from one kernel dispatch execution to another
by the host CPU agent using the HSA runtime. Accesses to the readonly segment might perform
better than accesses to global memory on some implementations.

Kernel agents are only permitted to perform read operations on the addresses of variables that
reside in readonly memory.

All readonly memory is persistent across the application.

Readonly segment variables have agent allocation. Each variable has multiple allocations, one for
each kernel agent on which code is loaded that accesses the variable, each allocation with a distinct
address. Each kernel agent can only access its associated allocation. The host CPU agent can access
all allocations by using the HSA runtime and specifying the kernel agent. See the alloc qualifier
description in section 4.3.10. Declaration and Definition Qualifiers (page 69).

Readonly memory can be set and made visible before the execution of a kernel dispatch, either
explicitly by HSAIL variable definition initializers, by the HSA runtime variable definition API, or by the
application executing on a host CPU agent using the HSA runtime. However, the behavior is
undefined if a readonly variable allocation value for a kernel agent is changed while a kernel
dispatch that uses that variable is executing on that kernel agent. See 4.10. Variable Initializers (page
94).

Chapter 2. HSAILProgramming Model 2.8 Segments

Chapter 2. HSAILProgramming Model 2.8 Segments

Readonly segment variables can be marked const in which case their value must not be changed
for their storage duration after they have been allocated and initialized. A const variable HSAIL
definition must have an initializer. A non-const HSAIL variable definition can optionally have an
initializer. See 4.3.10. Declaration and Definition Qualifiers (page 69).

Readonly memory cannot be accessed using a flat address.

It is implementation defined whether read-only memory protections are applied to the readonly
segment variables while a kernel dispatch is executing.

l Spill

HSAIL has a fixed number of registers, and the spill segment can be used to load or store register
spills. This also serves as a hint to the finalizer, which might be able to generate better code by
promoting spills into available hardware registers.

Spill memory is visible only to a single work-item of a kernel dispatch. A spill segment variable can be
read and written only by the work-item with which it is associated, but not by any other work-items or
other agents.

Spill segment variables can only be defined in a kernel or function code block, not outside a kernel or
function. The address of a spill segment variable cannot be taken with an lda instruction. These
restrictions make it easier for a finalizer to promote spill segment variables to hardware registers.

If temporary variables for a single work-item are required that do require their address to be taken,
then they can be defined in the private segment. Such variables would not be easy for a finalizer to
promote into hardware registers.

Spill memory is persistent across the execution of the work-item with which it is associated.

Spill memory is uninitialized when the work-item starts.

Spill memory cannot be accessed using a flat address.

l Arg

The arg segment is used to pass arguments into and out of functions.

Arg memory is visible only to a single work-item of a kernel dispatch while it executes an arg block
and the corresponding function call. An arg segment variable defined in an arg block can be
accessed only by the work-item with which it is associated, but not by any other work-items or other
agents. In an arg block it can be written if it corresponds to a call input actual argument, and read if it
corresponds to a call output actual argument; in the called function the input formal arguments can
only be read and the called function output formal argument can only be written.

The address of an arg segment variable cannot be taken with an lda instruction. This makes it
easier for a finalizer to allocate arg segment variables to hardware registers.

Arg memory is persistent across the execution of an arg block and associated called function of a
work-item of a kernel dispatch with which it is associated.

Arg memory is uninitialized when the work-item starts execution of an arg block.

Arg memory cannot be accessed using a flat address.

For more information, see 10.2. Function Call Argument Passing (page 244).

34 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 35

Also see:

l 4.6.2. Scope (page 78)

l 4.11. Storage Duration (page 96)

l 4.3.10. Declaration and Definition Qualifiers (page 69)

2.8.2 Shared Virtual Memory

Shared virtual memory is a basis of HSA. It means:

l A single work-item sees a flat address space.

Within that address space, certain address ranges are group memory, other ranges are private, and
so on. Implementations use the address to determine the kind of memory. Consequently, compilers
need not generate special forms of loads and stores for each type of memory. Pointers to memory
can be freely cast to integer and back without problems.

l Non-shared objects are hidden.

This means that each object is declared to be in one of four sharing levels: shared over all work-
items (global), shared over all work-items of a single dispatch (kernarg), shared over the work-group
(group), or never shared (private).

The private segments for each work-item overlay each other. Overlaying means that reads and
writes to address X in work-item 1 access work-item 1's private data, while reads and writes to the
same address X in work-item 2 access different storage. Thus, if work-item 1 declares a private
variable at address X, then work-item 2 cannot read or write the variable.

Similarly, every work-group sees only its own group segment, which is shared by the work-items
within the work-group, so no work-group can access the group memory of another work-group.

Likewise, every dispatch sees only its own kernarg segment, which is shared by the work-items within
the dispatch grid, so no dispatch can access the kernarg memory of another dispatch.

Every work-item and agent sees the same global memory.

2.8.3 Addressing for Segments

Memory instructions can use a flat address or specify the particular segment used.

If they use flat addresses, implementations will recognize when an address is within a particular segment.

If they specify the particular segment used, the address is relative to the start of the segment.

The address of a location in the global segment is the same value as a flat address to the same global
segment location. In addition, the same value is used for the null pointer value in both the global segment
and in a flat address. Therefore, no conversion is required to or from a flat address that references the
global segment and a global segment address.

If an address in group memory for work-group A is stored in global memory and then is accessed by a
different work-group B, the results are undefined.

When a flat memory instruction addresses location P, the address P is translated to an effective address Q
as follows:

Chapter 2. HSAILProgramming Model 2.8 Segments

Chapter 2. HSAILProgramming Model 2.8 Segments

1. If P is inside the flat address bounds of the private segment, then Q is set to an implementation
defined function of (P − start of the segment) and the work-item absolute ID. The implementation
defined function is intended to enable optimized memory layouts such as interleaving the memory
locations accessible by each work-item to improve the memory access pattern of the gang-
scheduled execution of work-items in wavefronts.

2. If P is inside the flat address bounds of the group memory segment, then Q is set to an
implementation defined function of (P − start of the group segment) and the work-group absolute ID.

3. If P is not inside the flat address bounds of the private or group memory segments, then Q is set to
an implementation defined function of P. The implementation defined function is intended to enable
optimized memory layouts such as interleaving or tiling.

Implementations can provide special hardware to accelerate this translation.

If two work-items try to reference the same address in private memory, step 1 above will ensure that the
effective addresses are different. This guarantees that private really is private, and allows programs to
address private memory without complex addressing.

For example, if the private segment started at address 1000 and ended at 2000, then the private segment
for work-group A might be from 1000 to 1255, while work-group B might use 1256 to 1511, and so forth.

If work-item 0 in work-group A used segment-relative address 100, it would address 1100, while if work-item
0 in work-group B used the same relative address 100, it would address 1356.

A memory instruction can be marked with a segment. In that case, the address in the instruction is treated
as segment-relative.

For more information, see 6.1. Memory and Addressing (page 166).

See also:

l 5.16. Segment Checking (segmentp) Instruction (page 153)

l 5.17. Segment Conversion Instructions (page 154)

2.8.4 Memory Segment Access Rules

The persistence of a memory segment specifies how stores in the segment can be seen by other loads. See
Table 2–2 (below).

Table 2–2 Memory Segment Access Rules

Segment HSA Component
interaction (HSAIL)

Non-HSA
Component
Agent
interaction

Persistence Allocation Definition
can be
initialized?

Where can
variables
be
defined?

Can be
accessed
by a flat
address?

Global General global space;
non-const variables
read-write; const
variables read-only
and value must not
change during
storage duration of
variable.

Read-write by
all agents.

Application Program
or agent

Optional
for non-
const

variables;
required
for const
variables

module;
kernel or
function
code block

Yes

36 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 37

Segment HSA Component
interaction (HSAIL)

Non-HSA
Component
Agent
interaction

Persistence Allocation Definition
can be
initialized?

Where can
variables
be
defined?

Can be
accessed
by a flat
address?

Readonly Read-only; value must
not change during
execution of kernel
dispatch.

Can be written
by host CPU
agent using
HSA runtime,
provided no
kernel dispatch
is executing
that is using
variable.

Application Agent Optional module;
kernel or
function
code block

No

Kernarg Holds kernel
arguments; read-only;
value must not
change during
execution of kernel
dispatch.

Initial values
provided by the
agent when the
kernel dispatch
is queued.
Initial values
must not be
changed while
kernel dispatch
is executing.

Kernel Automatic No kernel
formal
argument
list

No

Group Read-write. Inaccessible. Work-group Automatic No module;
kernel or
function
code block

Yes

Arg Holds function input
and output
arguments; actual
input arguments can
be written, actual
output argument can
be read, formal input
arguments can be
read and formal
output argument can
be written; cannot
have address taken
with lda instruction.

Inaccessible. Work-item Automatic No kernel or
function
arg block;
function
formal
arguments

No

Private Holds work-item local
variables; read-write.

Inaccessible. Work-item Automatic No module;
kernel or
function
code block

Yes

Spill Holds spilled register
values; read-write;
cannot have address
taken with lda

instruction.

Inaccessible. Work-item Automatic No kernel or
function
code block

No

Each segment has one of the following persistence values:

Chapter 2. HSAILProgramming Model 2.8 Segments

Chapter 2. HSAILProgramming Model 2.8 Segments

l Application: If the allocation is program, then stores in one kernel dispatch or agent thread can be
seen by loads of another kernel dispatch or agent thread in the same application execution. If the
allocation is agent, then stores in one kernel dispatch execution, or performed by the host CPU agent
using the HSA runtime and specifying the kernel agent, can be seen by any kernel dispatch executing
on the same kernel agent in the same application execution. Note, the readonly segment variables
for a kernel agent cannot be changed while a kernel dispatch that accesses the variables is
executing on that kernel agent.

l Kernel: stores in one kernel dispatch execution can be seen by loads in the same kernel dispatch
execution. Note, the kernarg segment values cannot be changed while kernel dispatch is executing.

l Work-group: stores in work-items in one work-group can only be seen by loads in work-items in the
same work-group.

l Work-item: stores in one work-item can only be seen by loads in the same work-item.

In addition, the scope of the declaration can further restrict if its value can be accessed. Private and spill
variables declared in a function, and the function argument list arg variables, can only be accessed while the
function is being executed by the work-item. Arg variables declared in an argument scope can only be
accessed while the containing argument scope is being executed by the work-item. See 4.6.2. Scope (page
78) and 4.11. Storage Duration (page 96).

The persistence also specifies if it is defined whether a segment address can be used in a memory access. It
can only be used in the same persistence entity that created it. For example, if the persistence is application,
then the address can be used to access the memory value in any work item in any kernel dispatched by the
application or other agent thread executed by the application. If the persistence is work-item, then only the
work-item that created the address can access it.

The variable referenced by a segment address is only defined if the value it references is defined. For
example, it is not defined if a group segment address created in a work-item of one work-group will access
the same named variable in a work-item of another work-group.

If a segment address is converted to a flat address, the results are defined only if the flat address is
converted back to a segment address of the original segment kind. This allows a segmentp instruction to
be used to determine a valid segment address to which the flat address can be converted. This can then be
used to perform segment address accesses, which might perform better on some implementations than flat
address accesses. See 5.16. Segment Checking (segmentp) Instruction (page 153).

The persistence rules also apply to flat addresses. A flat address memory access is only defined if the
memory access is defined for the original segment address.

The results of converting a flat address to a segment address is defined only if the value accessed by the
flat address is defined. For example, the results are not defined if a private segment address is converted
into a flat address in one work-item, and then converted back to a private segment address in another work-
item. It is not defined to access the private value in the first work-item, nor is it defined to access the value of
the same named variable in the second work-item.

For further information on:

l Allocation, see the alloc qualifier description in section 4.3.10. Declaration and Definition
Qualifiers (page 69).

l Initializers, see 4.10. Variable Initializers (page 94).

38 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 39

2.8.5 Memory Segment Isolation

An implementation is not required to isolate the memory for each segment. This means it may be possible
to access the memory of one segment using addresses in another segment. This may permit work-items or
other agents to use the aliased addresses to access variables in segments that are defined as being
inaccessible.

However, while the kernel dispatch executes, results are undefined if a variable allocated in one segment is
accessed in another segment:

l even if the variable is defined explicitly in HSAIL or is allocated dynamically by any agent including a
host CPU;

l even if the variable is accessed using a segment address or a corresponding flat address; and

l even if the access is done by another work-item in the same kernel dispatch, the work-items in other
kernel dispatches, or by other agents, including a host CPU.

An implementation is not required to detect or generate an exception if such an access occurs.

This allows an implementation considerable freedom in how it can implement segments:

l An implementation could use special dedicated hardware:

o Readonly and/or kernarg variables could be allocated in a specialized read-only cache.

o Special hardware could be used to accelerate arg and spill memory. For example, by
promoting them to hardware registers.

o Group addresses could be mapped to special scratch-pad memory allocated for each kernel
agent compute unit.

l An implementation could use addresses in global memory:

o If used to implement group memory, the implementation must adjust the group segment and
flat addresses used by work-items in one work-group so that accesses by work-items in a
different work-group access different memory locations for the same address.

o If used to implement private memory, the implementation must adjust the segment or flat
addresses used by each work-item so that different work-items access different memory
locations for the same private segment address. For example, this could be done:

o By using separate contiguous memory areas for each work-item.

o By expanding the segment or flat address into multiple interleaved addresses, one for
every work-item in a wavefront. This could be implemented by special hardware.

2.9 Small and Large Machine Models
HSAIL supports two machine models. Machine models determine the size of certain data values and are not
compatible. Table 2–3 (next page) shows the sizes used for the two models supported by HSAIL.

The machine model of the HSAIL code executed by a kernel agent must match the address space size of the
process that owns the User Mode Queue on which the kernel was dispatched. A process executing with a
32-bit address space size requires the HSAIL code to have the small machine model. A process executing
with a 64-bit address space requires the HSAIL code to have the large machine model.

Chapter 2. HSAILProgramming Model 2.9 Small and Large Machine Models

Chapter 2. HSAILProgramming Model 2.10 Base and Full Profiles

The small model might be appropriate for a legacy CPU 32-bit application that wants to use program data-
parallel sections.

The model must be specified using the module header. See 14.1. Syntax of the module Header (page 284).

Table 2–3 Machine Model Data Sizes

Small Large

Flat address 32-bit 64-bit

Global segment address 32-bit 64-bit

Readonly segment address 32-bit 64-bit

Kernarg segment address 32-bit 64-bit

Group segment address 32-bit 32-bit

Arg segment address 32-bit 32-bit

Private segment address 32-bit 32-bit

Spill segment address 32-bit 32-bit

Fbarrier address 32-bit 32-bit

Address expression offset 32-bit 64-bit

Atomic value 32-bit 32-bit & 64-bit

Signal value 32-bit 64-bit

Kernel code handle 64-bit 64-bit

Indirect function code handle 32-bit 64-bit

The small machine model has these constraints:

l 64-bit atomic operations are not supported.

l 64-bit signal value operations are not supported.

l For register plus offset addressing, the offset is truncated to 32 bits.

The large machine model has these constraints:

l 32-bit signal value operations are not supported.

2.10 Base and Full Profiles
HSAIL provides two kinds of profiles:

l Base

l Full

HSAIL profiles are provided to guarantee that the implementation supports a required feature set and
meets a given set of program limits. The strictly defined set of HSAIL profile requirements provides
portability assurance to users that a certain level of support is present.

The profile must be specified using the module header. See Chapter 14. module Header (page 284).

For more information, see Chapter 16. Profiles (page 288).

2.11 Race Conditions
If multiple work-items access the same addresses in group or global memory and one of the accesses is a
store, then it is possible to have a race condition.

40 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 41

In general, programs should add synchronization to avoid race conditions. See 6.2.1. Memory Order (page
169).

2.12 Divergent Control Flow
On kernel agents with a wavefront size greater than 1, control flow instructions can introduce a
performance issue called divergent control flow.

When a wavefront executes a branch that can transfer to multiple targets (namely a conditional branch cbr
or switch branch sbr, see Chapter 8. Branch Instructions (page 227)), or a function call that can invoke
multiple functions (namely a switch call scall or indirect call icall, see Chapter 10. Function Instructions
(page 243)), it is possible that the work-items in the wavefront take different paths. This causes the
wavefront to enter divergent control flow.

For example, a single cbr instruction will transfer control to the label for work-items where the source
condition is true and to the instruction after the cbr for work-items where the source condition is false.
Similarly, a sbr or scall instruction might transfer to different labels or functions respectively for work-
items which have different values for the source index. Finally, an icall instruction could transfer to
different functions for work-items that have different values for the indirect function descriptor. In these
cases, the wavefront is said to diverge, and the code is inside divergent control flow.

Because SIMD implementations cannot execute different instructions in the same cycle, executing in
divergent control flow might be less efficient. An implementation can improve performance in divergent
control flow by reconverging the work-items. For example, given an IF/THEN/ELSE/ENDIF, the wavefront
could diverge at the IF and reconverge at the ENDIF.

For example, in divergent control flow, an implementation may execute all the work-items that transfer to
the same target up to a reconvergence point, with the other work-items waiting, followed by execution of the
all the work-items that transfer to the next target, and so forth until all the possible targets are processed.
Then execution can continue by all work-items from the reconvergence point.

In the case of a cbr there can only be up to two possible targets, but an sbr, scall and icall could
potentially have many more. For example, a conditional branch could be written in pseudocode as:

if (condition) {
// then statements

} else {
// else statements

}

and might be translated into HSAIL as:

// compute the condition into $c0
cbr_b1 $c0, @k1;
// code for the else statements
br @join;
@k1:
// code the then statements
@join:

The time to execute this would be the sum of the time it takes to execute the THEN block plus the time it
takes to execute the ELSE block, if the cbr diverged. If the cbr does not diverge, then the time to execute
the example would only be the time it takes for the non-divergent path to execute. That is, either the THEN
block or the ELSE block but not both.

Chapter 2. HSAILProgramming Model 2.12 Divergent Control Flow

Chapter 2. HSAILProgramming Model 2.12 Divergent Control Flow

HSAIL requires that implementations reconverge control flow involving communication operations no later
than the immediate post-dominator (see 2.12.3. (Post-)Dominator and Immediate (Post-)Dominator (page
45)). Communication operations comprise:

l atomic memory (see 6.5. Atomic Memory Instructions (page 180))

l memfence (see 6.9. Memory Fence (memfence) Instruction (page 192))

l signals (see 6.8. Notification (signal) Instructions (page 187))

l imagefence (see 7.6. Image Fence (imagefence) Instruction (page 225))

l cross-lane (see 9.4. Cross-Lane Instructions (page 240))

l barrier and wavebarrier (see9.1. Barrier Instructions (page 229))

l fbarriers (see 9.2. Fine-Grain Barrier (fbarrier) Instructions (page 230))

l clock (see 11.4. Miscellaneous Instructions (page 264))

l cleardetectexcept, getdetectexcept and setdetectexcept (see 11.2. Exception
Instructions (page 260))

l or calls to functions that contain any of these (see Chapter 10. Function Instructions (page 243))

In addition, control flow involving cross-lane instructions (see 9.4. Cross-Lane Instructions (page 240)) must
diverge no later than the immediate dominator and reconverge no earlier than the immediate post-
dominator.

These requirements can limit certain optimizations that involve code hoisting and cloning control flow (see
17.6. Control Flow Optimization (page 293)). Divergent control flow can also occur within control flow that is
already divergent. In this case there are the same issues and requirements, except they only apply to the
work-items that are active in the parent divergent path being executed.

Because implementations are allowed to execute the work-items in a wavefront in lockstep, it is illegal for a
work-item in a wavefront to spin wait for a value written by a second work-item in the same wavefront.

Reliable communication between work-items requires synchronization. If one work-item writes into a
location and a different work-item reads back the same location without using synchronization, the result is
undefined. See 6.2.1. Memory Order (page 169).

2.12.1 Uniform Instructions

If the set of work-items that make up the dispatch grid can be partitioned into a set of slices, and if for each
independent slice an instruction behaves the same for each work-item in the slice each time it is evaluated
for a particular evaluation property, then the instruction is termed a uniform instruction with respect to the
slice and evaluation property. Note that the instruction does not have to behave the same for the work-
items of different slices, and does not have to behave the same each time the same instruction is evaluated.
The instruction only has to behave the same for the work-items in a single slice for a single evaluation of the
instruction.

Certain HSAIL memory, image, control flow, function and parallel synchronization, and communication
instructions allow the uniformity of the operation to be specified by an optional width modifier. These
instructions specify the evaluation property and default slice algorithm that will be used if the width modifier
is omitted. In addition, some special instructions are required to be uniform.

42 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 43

There are three kinds of uniform evaluation properties:

result uniform

Specifies that all active work-items in the slice will produce the same result value. Note that the
instruction may be in divergent code and only some of the work-items in the slice may be active. Only
the active work-items are required to produce the same result value, the inactive work-items are not
executing the instruction and so do not use the result of the instruction even if it is result uniform.

For example, a load instruction is result uniform if all active work-items in the slice will load the same
value, independent of each work-item's source operand address. This may allow a finalizer to generate
more efficient code by executing the load once and broadcasting the result to all active work-items in
the slice.

For another example, a conditional branch instruction is result uniform if all work-items in the slice
either take the branch or do not take the branch. Conceptually the result value of the conditional branch
is the code address of the next instruction. This may allow a finalizer to deduce that instructions in
divergent code are execution uniform if the control flow is reducible and all conditional control flow in
the control flow nest is result uniform. See also 2.12.2. Using the Width Modifier with Control Transfer
Instructions (next page).

execution uniform

Specifies that all work-items in the slice will either be active or inactive. It will never be the case that
some are active and some are inactive. Therefore, if the instruction is executed, it will be executed by all
work-items in the slice. Note, execution uniform does not specify that each work-item in the same slice
will have the same values for the source operands, and produce the same values when the instruction
is executed.

For example, a cross-lane instruction is execution uniform if all work-items in the slice will execute it.
This may allow a finalizer to use special machine instructions.

communication uniform

Specifies that all active work-items in the slice will only communicate with other active work-items in the
slice. No communication will happen between work-items that are in different slices. Communication
between work-items can be accomplished by using atomic memory instructions (to both the global and
group segments), memory fences, signal instructions, the clock instruction, cross-lane instructions,
the DETECT exception special instructions, and the execution synchronization instructions (barrier and
fbarrier).

For example, a barrier_width(n) indicates that only the work-items in a work-group's slice are
participating in some form of communication. If an implementation has a wavefront size that is greater
than or equal to n, it is free to optimize the code generated for the barrier because the gang-scheduled
execution of work-items in wavefronts will ensure execution synchronization of the communicating
work-items.

The uniform slice algorithm can be specified by the width modifier:

width(all)

Each slice is comprised of all the work-items of a single work-group.

Chapter 2. HSAILProgramming Model 2.12 Divergent Control Flow

Chapter 2. HSAILProgramming Model 2.12 Divergent Control Flow

width(n)

The value of n must be a power of 2 between 1 and 231 inclusive. Work-items are in the same slice if
they are in the same work-group and if the integral part of the work-items' flattened ID (see 2.3.2. Work-
Item Flattened ID and Current Work-Item Flattened ID (page 27)) divided by n are the same. Note that
all slices will not be of size n if the size of all work-groups is not a multiple of n.

width (WAVESIZE)

Same as width(n) where n is set to the implementation defined number of work-items in a wavefront
(see 2.6. Wavefronts, Lanes, and Wavefront Sizes (page 29)).

Note that the width modifier does not cause the finalizer to group work-items into wavefronts in a different
way. The assignment of work-items to wavefronts is fixed. See 2.6. Wavefronts, Lanes, and Wavefront Sizes
(page 29).

If the number of work-items in a work-group is not a multiple of WAVESIZE, then the last wavefront of the
work-group is termed a partial wavefront. Any lanes in a partial wavefront that do not correspond to work-
items of the work-group are termed partial lanes, and are treated as inactive. For execution uniform, partial
lanes are ignored, and only the non-partial lanes have to all be active or all be inactive.

If the slice size is larger than the work-group size, then it is treated the same as if width(all) was
specified.

The default for the width modifier if it is omitted depends on the instruction, and can either be width(1),
width(WAVESIZE), or width(all).

The width modifier is only a performance hint, and can be ignored by an implementation.

2.12.2 Using the Width Modifier with Control Transfer Instructions

Sometimes a finalizer can generate more efficient code if it knows details about how divergent control flow
might be.

Sometimes it is possible to know that a subset of the work-items will transfer to the same target, even when
all the work-items will not. HSAIL uses the width modifier to specify the result uniformity of the target of
conditional and switch branches. All active work-items in the same slice are guaranteed to branch to the
same target.

If the width modifier is omitted for control transfer instructions, it defaults to width(1), indicating each
active work-item can transfer to a target independently.

If active work-items specified by the width modifier do not transfer to the same target, the behavior is
undefined.

If a width modifier is used, then:

l If a conditional branch (cbr), then the value in src must be the same for all active work-items in the
same slice as it is used to determine the target of the branch.

l If a switch branch (sbr) or switch call (scall), then the index value in src does not have to be the
same for all active work-items in the same slice, but the label or function selected by those index
values must be the same for all active work-items in the same slice. It is the target that must be
uniform, not the index value.

l If an indirect call (icall), then the value in src must be the same for all active work-items in the
same slice as it is used to determine the indirect function being called.

44 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 45

For example, see the following pseudocode (part of a reduction):

for (unsigned int s = 512; s>=64; s>>=1) {
int id = workitemid(0);
if (id < s) {

sdata[id] += sdata[id + s];
}
barrier;

}

s will have the values 512, 256, 128, 64, and consecutive work-items in groups of 64 will always go the same
way.

For best performance, the if should be coded with a width modifier of width(64).

width(all) indicates that all work-items in the work-group will transfer to the same target. If a developer
knows, or a compiler can determine, that the condition in the example above was independent of the work-
item ID, then a possibly more efficient way to code the example would be to use the width(all) modifier
which specifies that either all active work-items will go to the target label or none of them will.

width(WAVESIZE) can be used to indicate that all work-items in the implementation defined wavefront
size will transfer to the same target. This requires that the kernel algorithm has been explicitly written to
use WAVESIZE appropriately. This in turn may require that the kernel is dispatched using values dependent
on the wavefront size. For example, the algorithm may require that the work-group size and dynamic group
memory allocation be a function of the wavefront size. The wavefront size for a particular kernel agent can
be obtained by an HSA runtime query. Using width(WAVESIZE) may allow the finalizer to optimize.

2.12.3 (Post-)Dominator and Immediate (Post-)Dominator

The dominator of an instruction o is defined as a point p in the program such that every path from the start
of the function or kernel that reaches o must go through p. No matter which path is taken from the start of
the function or kernel to reach o, control will always pass through p. The immediate dominator is the unique
point that does not dominate any other dominator of o.

The post-dominator of a branch instruction b is defined as a point p in the program such that every path
from the instruction b that reaches the end of the function or kernel must go through p. No matter which
path is taken out of b, control will eventually reach p. The immediate post-dominator is the unique point that
does not post-dominate any other post-dominator of b.

For example:

cbr_b1 $c1, @x; // a conditional branch
// ...
@x: // all code that leaves the cbr must eventually reach @x
// ...
@y: // and that code must reach @y

In this example, both @x and @y are post-dominators of the branch, but only x is the immediate post-
dominator.

Chapter 2. HSAILProgramming Model 2.12 Divergent Control Flow

Chapter 3. Examples ofHSAILPrograms 3.1 Vector Add Translated to HSAIL

CHAPTER 3.
Examples of HSAIL Programs

This chapter provides examples of HSAIL programs.

The syntax and semantics of HSAIL instructions are explained in subsequent chapters. These examples are
provided early in this manual so you can see what an HSAIL program looks like.

3.1 Vector Add Translated to HSAIL
The “hello world” of data parallel processing is a vector add.

Suppose the high-level compiler has identified a section of code containing a vector add operation, as
shown below:

__kernel void vec_add(__global const float *a,
__global const float *b,
__global float *c,
const unsigned int n)

{
// Get our global thread ID
int id = get_global_id(0);

// Make sure we do not go out of bounds
if (id < n)
c[id] = a[id] + b[id];

}

The code below shows one possible translation to HSAIL:

module &VectorAdd:1:0:$full:$small:$default;

kernel &__OpenCL_vec_add_kernel(
kernarg_u32 %arg_val0,
kernarg_u32 %arg_val1,
kernarg_u32 %arg_val2,
kernarg_u32 %arg_val3)

{
@__OpenCL_vec_add_kernel_entry:
// BB#0: // %entry
ld_kernarg_u32 $s0, [%arg_val3];
workitemabsid_u32 $s1, 0;
cmp_lt_b1_u32 $c0, $s1, $s0;
ld_kernarg_u32 $s0, [%arg_val2];
ld_kernarg_u32 $s2, [%arg_val1];
ld_kernarg_u32 $s3, [%arg_val0];
cbr_b1 $c0, @BB0_2;
br @BB0_1;

@BB0_1: // %if.end
ret;

@BB0_2: // %if.then
shl_u32 $s1, $s1, 2;
add_u32 $s2, $s2, $s1;
ld_global_f32 $s2, [$s2];
add_u32 $s3, $s3, $s1;
ld_global_f32 $s3, [$s3];
add_f32 $s2, $s3, $s2;
add_u32 $s0, $s0, $s1;

46 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 47

st_global_f32 $s2, [$s0];
br @BB0_1;

};

3.2 Transpose Translated to HSAIL
The code below shows one way to write a transpose.

module &Transpose:1:0:$full:$small:$default;

kernel &__OpenCL_matrixTranspose_kernel(
kernarg_u32 %arg_val0,
kernarg_u32 %arg_val1,
kernarg_u32 %arg_val2,
kernarg_u32 %arg_val3,
kernarg_u32 %arg_val4,
kernarg_u32 %arg_val5)

{
@__OpenCL_matrixTranspose_kernel_entry:
// BB#0: // %entry
workitemabsid_u32 $s0, 0;
workitemabsid_u32 $s1, 1;
ld_kernarg_u32 $s2, [%arg_val5];
workitemid_u32 $s3, 0;
workitemid_u32 $s4, 1;
mad_u32 $s5, $s4, $s2, $s3;
shl_u32 $s5, $s5, 2;
ld_kernarg_u32 $s6, [%arg_val2];
add_u32 $s5, $s6, $s5;
ld_kernarg_u32 $s6, [%arg_val3];
mad_u32 $s0, $s1, $s6, $s0;
shl_u32 $s0, $s0, 2;
ld_kernarg_u32 $s1, [%arg_val1];
add_u32 $s0, $s1, $s0;
ld_global_f32 $s0, [$s0];
st_group_f32 $s0, [$s5];
barrier;
workgroupid_u32 $s0, 0;
mad_u32 $s0, $s0, $s2, $s3;
workgroupid_u32 $s1, 1;
mad_u32 $s1, $s1, $s2, $s4;
ld_kernarg_u32 $s2, [%arg_val4];
mad_u32 $s0, $s0, $s2, $s1;
shl_u32 $s0, $s0, 2;
ld_kernarg_u32 $s1, [%arg_val0];
add_u32 $s0, $s1, $s0;
ld_group_f32 $s1, [$s5];
st_global_f32 $s1, [$s0];
ret;

};

Chapter 3. Examples ofHSAILPrograms 3.2 Transpose Translated to HSAIL

Chapter 4. HSAILSyntax andSemantics 4.1 Two Formats

CHAPTER 4.
HSAIL Syntax and Semantics

This chapter describes the HSAIL syntax and semantics.

4.1 Two Formats
HSAIL modules can be represented in either of two formats:

l Text format

l Binary format (BRIG)

This chapter describes the text format.

The chapters describing HSAIL instructions show syntax for the text format.

For more information about BRIG, see Chapter 18. BRIG: HSAIL Binary Format (page 298).

The HSA runtime finalizer operates on the BRIG format.

4.2 Program, Code Object, and Executable
An application can use the HSA runtime to generate code from HSAIL that can be executed on kernel
agents. The life cycle is split into three stages:

l Finalization: Creates code for a specific kernel agent instruction set architecture. (See 4.2.1.
Finalization (facing page).)

l Loading: Manages the allocation of global and readonly segment variables and installing of the
finalized code onto specific kernel agents. (See 4.2.2. Loading (page 51).)

l Execution: Creates dispatch packets that are executed on a kernel agent. (See 4.2.3. Execution (page
52).)

The HSA runtime objects and operations on them that support the first two stages are illustrated in Figure
4–1 (facing page).

Finalization and loading can be performed within the same application, or can be done by independent
applications by using the HSA runtime serialize and deserialize operations to save and restore the finalized
code. This supports both online and offline finalization paths, and also provides the ability to implement
application install time finalization and persistent disk caching to reduce online finalization.

48 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 49

Figure 4–1 HSA Runtime Support for HSAIL Life Cycle

4.2.1 Finalization

An application can use the HSA runtime to create zero or more HSAIL programs, to which it can add zero or
more HSAIL modules.

When an HSAIL program is created the machine model (see 2.9. Small and Large Machine Models (page
39)), profile (see Chapter 16. Profiles (page 288)), and default floating-point rounding mode (see 4.19.2.
Floating-Point Rounding (page 109)) must be specified. All HSAIL modules have a module header (see
Chapter 14. module Header (page 284)) that specifies the HSAIL version, machine model, profile, and
default floating-point rounding mode of the module. All HSAIL modules added to the program must:

l Must have an HSAIL version that the HSA runtime supports.

l Must have the same machine model as the HSAIL program.

l Must have the same profile as the HSAIL program.

l Must have either the default floating-point rounding mode or the same default floating-point
rounding mode as the HSAIL program.

The HSAIL modules added to a program must not be destroyed until the program is destroyed.

Chapter 4. HSAILSyntax andSemantics 4.2 Program, Code Object, and Executable

Chapter 4. HSAILSyntax andSemantics 4.2 Program, Code Object, and Executable

The HSAIL module is the unit of HSAIL generation, and can contain multiple symbol declarations and
definitions. A module can be added to zero or more programs. A module has a name (see Chapter 14.
module Header (page 284)). Every module added to a program must have a unique name. Linking of symbol
declarations to symbol definitions between modules is done within the context of the HSAIL program (see
4.12. Linkage (page 97)).

The HSA runtime finalizer can be used to generate an HSA code object that contains the code for all the
kernels and indirect functions defined in the modules added to a specific program for a specific instruction
set architecture. All variables, fbarriers, and functions must be defined amongst the modules that have
been added to the program if they are referenced by operations in the code block of:

l The kernels and indirect functions defined in the modules added to the program.

l The transitive closure of all functions specified by call or scall instructions starting with the
kernels and indirect functions defined in the modules added to the program. See Chapter 10.
Function Instructions (page 243).

The exception is that global and readonly segment variables with program linkage do not have to be
defined. For example, this allows a host CPU allocated variable to act as the definition of an HSAIL variable.

It is allowed for a kernels and unreferenced indirect functions to have no definition in a program being
finalized. Such kernels and indirect functions will not be part of the generated code object.

If the program specifies the default floating-point rounding mode as default, then the finalizer will use the
default floating-point rounding mode of the kernel agent for which it is generating code. If the program
specifies the default floating-point rounding mode as zero or near then finalizer will report an error if the
kernel agent does not support that default floating-point rounding mode. Otherwise, the finalizer will use the
default floating-point rounding mode of the program.

Note that:

l The finalizer uses the default floating-point rounding mode of the program, not that specified by the
modules added to the program. In particular, if a module specifies a default floating-point rounding
mode of default and the program it is added to has a default floating-point rounding mode of
zero or near, then the module will behave as if its module header was specified with the same
floating-point rounding mode as the program

l The code object produced by the finalizer always has a default floating-point rounding mode of zero
or near, even if the default floating-point rounding mode of the program being finalized is
default.

l In the case of a program with a default floating-point rounding mode of default, it is not until the
program is finalized for a specific kernel agent that the actual floating-point rounding mode used as
the default, by that kernel agent, can be determined and used in the generation of the code object.

Each instruction set architecture can support one or more call conventions. For example, different call
conventions may use a different number of hardware registers to allow different numbers of wavefronts to
execute on a compute unit. An HSA runtime query is available to determine the number of call conventions
supported by an instruction set architecture, and to determine properties of each call convention such as
maximum number of wavefronts per compute unit. When finalizing, the specific call convention required can
be specified, or the finalizer can be requested to choose the best call convention based on the kernels. The
call convention used is recorded in the code object produced by the finalizer.

An HSA program can be finalized for the same instruction set architecture with different call conventions.

50 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 51

Once the HSA code objects for the required instruction set architectures have been created, the HSA
runtime can be used to destroy the HSAIL program. The code objects are independent of the program and
modules.

The HSA runtime can be used to serialize an HSA code object to a memory blob so it can be saved to disk.
This could be used to support offline finalization, or caching of finalized results.

4.2.2 Loading

A code object can either be created directly using the HSA runtime finalizer, or by deserializing a previously
serialized code object.

To execute code in a code object it must be loaded. An application can use the HSA runtime to create zero
or more HSA executables to which it can load zero or more code objects into specified kernel agents.

When an HSA executable is created, the profile must be specified.

The instruction set architecture of the code object must be compatible with the instruction set architecture
of the kernel agent.

The version of the code object must be supported by the HSA runtime.

The machine model of the code object must match the address size used by the application (see Table 2–3
(page 40)).

The profile of the code object must match the profile of the executable.

The default floating-point rounding mode of the code object (which is either zero or near) must be
supported by the kernel agent. Note that an executable may contain code objects that use different default
floating-point rounding modes as different kernel agents may have different default floating-point rounding
modes. Also note that the default floating-point rounding mode of the code object does not have to be the
same as the default floating-point rounding mode of the kernel agent, it just has to be one of the floating-
point rounding modes that the kernel agent supports.

Multiple code objects can be loaded into an executable for different kernel agents. The same code object
can be loaded to multiple kernel agents that have the same instruction set architecture.

All code loaded into a single executable must have been finalized from the same program. Two programs
are considered the same if they have the same modules added in the same order.

Once a code object has been loaded into an executable, it can be destroyed. The code object and executable
are independent.

When all code objects have been added, the HSA runtime must be used to freeze the executable. Once
frozen no further code objects can be loaded.

The executable manages allocating the global and readonly segment variables referenced by the code
objects that are defined in the program according to the linkage (see 4.12. Linkage (page 97)) and allocation
(see 4.3.10. Declaration and Definition Qualifiers (page 69) and 6.2.5. Agent Allocation (page 171)) of the
variable. For example:

l If multiple code objects are loaded in the same executable that reference a program allocation
global segment variable, then they will share a single allocation.

l If multiple code objects are loaded in the same executable for different agents that reference an
agent allocation global segment variable or readonly segment variable, then each agent will have a
distinct allocation.

Chapter 4. HSAILSyntax andSemantics 4.2 Program, Code Object, and Executable

Chapter 4. HSAILSyntax andSemantics 4.2 Program, Code Object, and Executable

If the same code object is added to multiple executables, each executable will have its own distinct
allocations.

In addition, the application can provide external global and readonly segment variable definitions to an
executable for variables not defined by the program, and can obtain the address of global and readonly
segment variables allocated by the executable, using the HSA runtime.

Once an executable is frozen:

l all global and readonly segment variables defined by the program and referenced by the loaded
code objects have been allocated;

l the loaded code has been relocated to reference the variable allocations and external definitions;

l the code has been installed in the kernel agents, copying to agent local memory if necessary;

l and any instruction caches have been flushed.

At this point, the code of the executable is available to be executed on the kernel agents on which it has
been loaded.

4.2.3 Execution

Once a code object has been loaded into an executable for a kernel agent, and the executable has been
frozen, kernels in it can be executed by adding a kernel dispatch packet to a User Mode Queue associated
with the kernel agent. The information reported by the finalizer that is required to create the kernel dispatch
packet can be obtained using HSA runtime queries on the HSA executable or HSA code object for the
specific kernel. This information includes:

l The byte size of the group segment for a single work-group. This includes:

o Module scope and function scope group segment variables used by the kernel or any
functions it calls directly or indirectly.

o Any finalizer allocated temporary space. For example, in the implement of exception
instructions or fbarriers.

This does not include any dynamically allocated group segment space (see 4.20. Dynamic Group
Memory Allocation (page 112)).

l The byte size of the private segment for a single work-item. This includes:

o Module scope and function scope private segment variables.

o Space for function scope spill segment variables allocated in memory.

o Space for argument scope arg segment variables allocated in memory.

o Any space needed for saved HSAIL or hardware registers due to calls.

o Any other finalizer introduced temporaries including spilled hardware registers and space for
function call stack if statistically known.

These include both objects used directly by the kernel as well as any functions it calls directly or
indirectly.

52 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 53

If the kernel uses alloca, calls indirect functions using icall or has recursive function calls, then
the finalizer may report that a dynamically sized call stack is required. The private segment size does
not include the size of the dynamically sized call stack, only the size of the statically known private
segment objects.

If the finalizer reports that a dynamic call stack is used, then the private segment size used in the
dispatch packet must have the size of the call stack added to the reported static private segment
size.

l The kernel code handle for the finalized code that includes the executable code for the kernel agent.
It can be used for the kernel dispatch packet kernel object address field. A kernel code handle is an
opaque 64-bit value for small and large machine model (see 2.9. Small and Large Machine Models
(page 39)).

Other information that may be useful to a high-level language runtime to invoke and manage the kernel's
execution can also be queried. For example, the size and alignment of the kernarg segment and the call
convention used by the code of the kernel.

Once a kernel dispatch packet has been added to the User Mode Queue, the kernel agent’s packet
processor will initiate execution of the kernel dispatch when it processes the packet.

HSA runtime queries on an HSA executable can also be used to obtain an indirect function code handle for
an indirect function in a code object loaded on a kernel agent for a specific call convention. An indirect
function code handle is an opaque 32-bit value in small machine model, and 64-bit value in large machine
model (see 2.9. Small and Large Machine Models (page 39).

The application can pass indirect function code handles into kernel dispatches, or store them into global
memory, for example, to use as a virtual function tables. A kernel can use them to call the indirect functions
using the icall instruction (see 10.8. Indirect Call (icall) Instruction (page 252)). The icall instruction is
not supported by the Base profile (see 16.2.1. Base Profile Requirements (page 289).

The code for indirect functions is only made available to kernel dispatches launched after the indirect
function has been loaded and the executable frozen. Therefore, prior to executing a kernel, all indirect
functions that it will call must have been loaded for the kernel agent with the call convention used by the
kernel code.

The code for kernels and indirect functions will remain available to execute until the HSA runtime is used to
destroy the HSA executable in which the code is loaded. All HSA executables created by the application are
implicitly destroyed when the application terminates.

4.3 Module
A module is the basic building block for HSAIL programs. When HSAIL is generated it is represented as a
module.

A module begins with a module header, is followed by zero or more module directives, and ends with zero
or more module statements.

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Figure 4–2 module Syntax Diagram

The module header specifies the module name, HSAIL language version and the required profile, machine
model, and default floating-point rounding mode. For more information, see Chapter 14. module Header
(page 284).

Figure 4–3 moduleHeader Syntax Diagram

Figure 4–4 profile Syntax Diagram

Figure 4–5 machineModel Syntax Diagram

54 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 55

Figure 4–6 defaultFloatRounding Syntax Diagram

A module directive can be the extension directive which must precede other HSAIL statements and applies
to the whole module. See Chapter 13. Directives (page 274).

Figure 4–7 moduleDirective Syntax Diagram

A module statement can be a module variable, module fbarrier, kernel, function or signature.

Figure 4–8 moduleStatement Syntax Diagram

4.3.1 Annotations

Comments, file and line number location information, and pragmas can be interleaved with other HSAIL
statements.

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Figure 4–9 annotations Syntax Diagram

Figure 4–10 annotation Syntax Diagram

Comments that can span multiple lines use non-nested /* and */. The comment starts at the /* and
extends to the next */, which might be on a different line.

Comments use // to begin a comment that extends to the end of the current line.

Comments are treated as white-space.

In Extended Backus-Naur Form, TOKEN_COMMENT is used for both types of comment.

Figure 4–11 TOKEN_COMMENT Syntax Diagram

For more information on location and pragma directives, see Chapter 13. Directives (page 274).

4.3.2 Kernel

A kernel can either be a declaration or a definition.

A kernel declaration establishes the name, formal arguments and linkage of a kernel.

A kernel definition establishes the same characteristics as a declaration, and in addition defines the kernel's
code block.

56 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 57

A kernel with the same name can be declared in a module zero or more times, but can be defined at most
once.

All kernels with the same name in a module denote the same kernel and must be compatible.

Kernel declaration and definitions are compatible if they:

l have the same kernel formal arguments,

l and have the same linkage.

If the kernel has program linkage, then there can be at most one definition of a kernel with program linkage
with that name amongst all the modules in the same program. All kernels with program linkage in any
module of the same program that have the same name denote the same kernel and must be compatible.
This allows a kernel to be defined in one module, but used in another module of the same program.
Otherwise, the kernel has module linkage and can only be referenced within the same module. If a kernel is
declared with module linkage, then it must have a definition in the same module. See 4.12. Linkage (page
97).

A single module can contain multiple kernel declarations and definitions.

A kernel declaration or definition consists of decl if a declaration, followed by its linkage, the kernel
keyword, the kernel name, the kernel formal argument list, the code block if a definition, and terminated by
a semicolon (;).

The arguments of a kernel declaration have none linkage as they are not referenced by any instructions.

The arguments of a kernel definition have function linkage and can only be referenced within the function
scope in which they are defined.

Figure 4–12 kernel Syntax Diagram

Figure 4–13 kernelHeader Syntax Diagram

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Figure 4–14 kernFormalArgumentList Syntax Diagram

Figure 4–15 kernFormalArgument Syntax Diagram

4.3.3 Function

A function can either be a declaration or a definition.

A function declaration establishes the name, output formal arguments, input formal arguments, whether it
is an indirect function, and linkage of a function.

A function definition establishes the same characteristics as a declaration, and in addition defines the
function's code block.

A function with the same name can be declared in a module zero or more times, but can be defined at most
once.

All functions with the same name in a module denote the same function and must be compatible.

Function declaration and definitions are compatible if they:

l have the same function output and input formal arguments,

l match whether they are indirect or not,

l and have the same linkage.

If the function has program linkage, then there can be at most one definition of a function with program
linkage with that name amongst all the modules in the same program. All functions with program linkage in
any module of the same program that have the same name denote the same function and must be
compatible. This allows a function to be defined in one module, but used in another module of the same
program. Otherwise, the function has module linkage and can only be referenced within the same module. If
a function is declared with module linkage, then it must have a definition in the same module. See 4.12.
Linkage (page 97).

An indirect function has limitations on the symbols it can reference. See 10.8. Indirect Call (icall) Instruction
(page 252).

A single module can contain multiple function declarations and definitions.

58 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 59

A function declaration or definition consists of decl if a declaration, followed by its linkage, an optional
indirect keyword to specify an indirect function, the function keyword, the function name, the function
output formal argument list, the function input formal argument list, the code block if a definition, and
terminated by a semicolon (;).

The arguments of a function declaration have none linkage as they are not referenced by any operations.

The arguments of a function definition have function linkage and can only be referenced within the function
scope in which they are defined.

Figure 4–16 function Syntax Diagram

Figure 4–17 functionHeader Syntax Diagram

Figure 4–18 funcOutputFormalArgumentList Syntax Diagram

Figure 4–19 funcInputFormalArgumentList Syntax Diagram

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Figure 4–20 funcFormalArgumentList Syntax Diagram

Figure 4–21 funcFormalArgument Syntax Diagram

For more information, see Chapter 10. Function Instructions (page 243).

4.3.4 Signature

A function signature does not describe a single function: it defines a type of function which describes a set of
functions that have the same types of arguments. It therefore cannot be called directly, but instead is used
to describe the target of an indirect function call icall instruction.

Syntactically, a signature is much like a function.

The arguments of a signature have none linkage as they are not referenced by any instructions.

Figure 4–22 signature Syntax Diagram

Figure 4–23 sigOutputFormalArgumentList

Figure 4–24 sigInputFormalArgumentList Syntax Diagram

60 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 61

Figure 4–25 sigFormalArgumentList Syntax Diagram

Figure 4–26 sigFormalArgument Syntax Diagram

For more information, see Chapter 10. Function Instructions (page 243).

4.3.5 Code Block

A code block consists of zero or more code block directives, followed by zero or more code block definitions,
followed by zero or more code block statements, all surrounded by curly brackets ({}).

Figure 4–27 codeBlock Syntax Diagram

A code block directive can be a control directive which must precede other HSAIL statements in the code
block and applies to the kernel or function with which the code block is associated.

Figure 4–28 codeBlockDirective Syntax Diagram

A code block definition can be a code block variable or code block fbarrier.

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Figure 4–29 codeBlockDefinition

A code block statement can be an arg block, label, or instruction (except a call instruction, which is only
allowed in an arg block). The code block statements contain the bulk of the code in an HSAIL module.

Figure 4–30 codeBlockStatement Syntax Diagram

For more information on:

l Control directives, see Chapter 13. Directives (page 274).

l Labels, see 4.9. Labels (page 94).

4.3.6 Arg Block

An arg block consists of zero or more arg block definitions, followed by one or more arg block statements,
which must include exactly one call instruction, all surrounded by curly brackets ({}). An arg block is used to
pass argument values into and out of a call to a function. See 10.2. Function Call Argument Passing (page
244).

Figure 4–31 argBlock Syntax Diagram

An arg block definition can be an arg block variable.

62 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 63

Figure 4–32 argBlockDefinition

An arg block statement can be a label or instruction (including a call instruction).

Figure 4–33 argBlockStatement Syntax Diagram

For more information, see 10.2. Function Call Argument Passing (page 244).

4.3.7 Instruction

An instruction is an executable HSAIL statement.

The example below shows four instructions:

global_f32 %array[256];
@start: workitemid_u32 $s1, 0;

shl_u32 $s1, $s1, 2; // multiply by 4
ld_global_u32 $s2, [%array][$s1]; // reads array[4 * workid]
add_f32 $s2, $s2, 0.5F; // add 1/2

Instructions consist of an opcode usually followed by an underscore followed by a type followed by a
comma-separated list of zero or more operands and ending with a semicolon (;). Some instructions use
special syntax for certain operands.

Operands can be registers, constants, address expressions, or the identifier of a label, kernel, function,
signature, or fbarrier. Some instructions also support lists of operands surrounded by parentheses (()) or
square brackets ([]). The destination operand is first, followed by source operands. See 4.16. Operands
(page 104).

HSAIL allows a finalizer to support extensions that add additional features to HSAIL, for example, additional
instructions and data types. A finalizer extension is enabled using the extension directive. Any instructions
enabled by a finalizer extension are accessed like all other HSAIL instructions. For more information, see
13.1.3. How to Set Up Finalizer Extensions (page 275).

For more information, see:

l Chapter 5. Arithmetic Instructions (page 116)

l Chapter 6. Memory Instructions (page 166)

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Chapter 4. HSAILSyntax andSemantics 4.3 Module

l Chapter 7. Image Instructions (page 194)

l Chapter 8. Branch Instructions (page 227)

l Chapter 9. Parallel Synchronization and Communication Instructions (page 229)

l Chapter 10. Function Instructions (page 243)

l Chapter 11. Special Instructions (page 257)

4.3.8 Variable

A module variable can either be a declaration or a definition. A code block or arg block variable can only be
a definition.

A variable declaration establishes the name, segment, data type, array dimensions, linkage, and variable
qualifiers of a variable.

A variable definition establishes the same characteristics as a declaration, and in addition for some
segments can specify an initializer. For global and readonly segment variables, a definition causes memory
for the variable to be allocated, and initialized if it has an initializer, when a code object that references the
variable is loaded into an executable. The memory is destroyed when the HSA runtime is used to destroy
the executable. All HSAIL executables created by the application are implicitly destroyed when the
application terminates.

A module variable with the same name can be declared in a module zero or more times, but can be defined
at most once.

All module variables with the same name in a module denote the same variable and must be compatible.

Variable declaration and definitions are compatible if they:

l have the same segment,

l have the same data type,

l have the same linkage,

l have the same variable qualifiers,

l have matching array dimension declarations:

o have no array dimension specified, or

o have an array dimension specified with matching array dimension size:

o A definition with an initializer that has an array dimension that is empty has an array
dimension size equal to the byte size of the initializer divided by the byte size of the
variable data type. It is an error if the initializer byte size is not an exact multiple of the
variable data type byte size. (The b1 bit type is not allowed for variables.)

o A declaration with an array dimension that is empty matches a declaration or
definition with an array dimension of any size.

o Otherwise the array dimension sizes must be the same.

There can only be one code block or arg block variable with a specific name in the scope of its identifier. The
same name is allowed as a code block or arg block variable in a different scope. For example, there can be
multiple function scope variables with the same name if they are defined in different functions or kernels.
See 4.6.2. Scope (page 78).

64 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 65

A code block variable has function linkage and can only be referenced within the function scope in which it is
defined.

An arg block variable has arg linkage and can only be referenced within the arg block in which it is defined.

If the module variable has program linkage, then there can be at most one definition of a module variable
with program linkage with that name amongst all the modules in the same program. All module variables
with program linkage in any module of the same program that have the same name denote the same
variable and must be compatible. This allows a module variable to be defined in one module, but used in
another module. Otherwise, the module variable has module linkage and can only be referenced within the
same module. If a module variable is declared with module linkage, then it must have a definition in the
same module. See 4.12. Linkage (page 97).

At the time a kernel or indirect function is finalized, there must be a definition for all the variables
referenced by address expressions of operations that are part of the kernel or indirect function (including
any indirect references from operations in functions they call by call and scall instructions) in one of the
modules that belong to the program.

A single module can contain multiple variable declarations and definitions.

A module variable declaration or definition consists of decl if it is a declaration, followed by its linkage, the
optional variable qualifiers, a segment, a data type, the variable name, an optional array dimension, an
optional initializer if a definition for a segment that allows initializers, and terminated by a semicolon (;).

A code block or arg block variable can only be a definition and has function and arg linkage respectively.
Therefore, it is defined the same as a module variable except decl and linkage are not specified.

Figure 4–34 moduleVariable Syntax Diagram

Figure 4–35 codeBlockVariable Syntax Diagram

Figure 4–36 argBlockVariable Syntax Diagram

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Figure 4–37 variable Syntax Diagram

A variable segment can be one of the following:

l Readonly: Only allowed for module and code block variables.

l Global: Only allowed for module and code block variables.

l Group: Only allowed for kernel code block variables, In addition, allowed for module and function
code block variables as an experimental feature (see 1.3. HSAIL Experimental Features (page 22)).

l Private: Only allowed for code block variables. In addition, allowed for module variables as an
experimental feature (see 1.3. HSAIL Experimental Features (page 22)).

l Spill: Only allowed for code block variables.

l Arg: Only allowed for arg block variables.

The syntax for kernarg and arg segment formal argument variables is defined in 4.3.2. Kernel (page 56) and
4.3.3. Function (page 58) respectively.

Figure 4–38 variableSegment Syntax Diagram

The variable data type can be one of the data types described in 4.13. Data Types (page 99), except for b1.

66 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 67

Figure 4–39 dataTypeMod Syntax Diagram

Variables that hold addresses of variables, kernel code handles or indirect function code handles should be
of type u and of size 32 or 64 depending on the machine model (see 2.9. Small and Large Machine Models
(page 39)).

Array variables are provided to allow the high-level compiler to reserve a memory block of arbitrary size. To
declare or define an array variable, the variable name is followed with an array dimension declaration. The
size of the dimension is either an integer constant of type u64 or is left empty. An integer constant with a
value of 0 is not allowed. WAVESIZE is not allowed. Note that the array declaration is similar to the C++
language.

Figure 4–40 optArrayDimension Syntax Diagram

The dimension of the array specifies how many contiguous elements must be reserved. Each element is
aligned on the base type length, so no padding is necessary.

The array dimension of a global, readonly, group, or private segment variable declaration can be left empty,
in which case the size is specified by the array variable’s definition (note that this follows the C++ language
rules).

The last formal argument of a function or signature can be an array without a specified dimension. The size
passed is determined by the size of the arg segment variable definition passed to the function by the call
instruction. This is used to support variadic function calls. See 10.4. Variadic Functions (page 248).

The array dimension of a global or readonly segment variable definition can be left empty in which case an
initializer must be specified and is used to provide the array dimension size.

A variable can have an optional initializer. An initializer is only allowed for variable definitions for the
following segments:

l Global

l Readonly

If there is no initializer, the value of the variable is undefined when it is allocated.

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Chapter 4. HSAILSyntax andSemantics 4.3 Module

For more information on:

l Variable initializers, see 4.10. Variable Initializers (page 94).

l Identifier scopes, see 4.6.2. Scope (page 78).

l Variable storage duration, see 4.11. Storage Duration (page 96).

4.3.9 Fbarrier

A module fbarrier can either be a declaration or a definition. A code block fbarrier can only be a definition.

An fbarrier declaration or definition establishes the name of a fine-grain barrier.

A module fbarrier with the same name can be declared in a module zero or more times, but can be defined
at most once.

All module fbarriers with the same name in a module denote the same fine-grain barrier and must be
compatible.

fbarrier definition and declarations are compatible if they have the same linkage.

If a module fbarrier has program linkage, then there can be at most one definition of an fbarrier with
program linkage with that name amongst all the modules in the same program. All module fbarriers with
program linkage in any module of the same program that have the same name denote the same fine-grain
barrier. This allows a module fbarrier to be defined in one module, but used in another module of the same
program. Otherwise, the module fbarrier has module linkage and can only be referenced within the same
module. If a module fbarrier is declared with module linkage, then it must have a definition in the same
module. See 4.12. Linkage (page 97).

There can only be one code block fbarrier with a specific name in the scope of its identifier. The same name
is allowed as a code block fbarrier in a different scope. For example, there can be multiple function scope
fbarriers with the same name if they are defined in different functions or kernels. See 4.6.2. Scope (page
78).

A code block fbarrier has function linkage and can only be referenced within the function scope in which it is
defined.

At the time a kernel is finalized, there must be a definition for all the fine-grain barriers referenced by
fbarrier instructions that are part of the kernel (including any indirect references from instructions in
functions they call by call and scall instructions) in one of the modules that belong to the program.

A single module can contain multiple fbarrier declarations and definitions.

A module fbarrier declaration or definition consists of decl if a declaration, followed by its linkage, the
fbarrier name and terminated by a semicolon (;).

A code block fbarrier can only be a definition and has function linkage. Therefore, it is defined the same as a
module fbarrier except decl and linkage are not specified.

Figure 4–41 moduleFbarrier Syntax Diagram

68 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 69

Figure 4–42 codeBlockFbarrier Syntax Diagram

Figure 4–43 fbarrier Syntax Diagram

For more information, see 9.2. Fine-Grain Barrier (fbarrier) Instructions (page 230).

4.3.10 Declaration and Definition Qualifiers

There are multiple qualifiers that can be used with certain declarations and definitions.

Figure 4–44 optDeclQual Syntax Diagram

Figure 4–45 declQual Syntax Diagram

Figure 4–46 linkageQual Syntax Diagram

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Figure 4–47 optAlignQual Syntax Diagram

Figure 4–48 optAllocQual Syntax Diagram

Figure 4–49 optConstQual Syntax Diagram

decl

Specifies that the symbol is being declared and not defined. Only allowed for kernels, functions, module
variables, and module fbarriers. If omitted then the symbol is being defined.

prog

Specifies that the symbol has program linkage. Only allowed for kernels, functions, module variables,
and module fbarriers. If omitted:

l Kernels, functions, module variables, and module fbarriers default to module linkage.

l Code block variables, code block fbarriers, kernel, and function definition formal arguments
default to function linkage.

l Arg block variables default to arg linkage.

l Signature definition, kernel declaration, and function declaration formal arguments default to
none linkage.

See 4.12. Linkage (page 97).

alloc(allocationKind)

Specifies the allocation for a variable. Only available for global segment variables, in both module and
function scopes. Valid value of allocationKind is agent. If omitted defaults to: agent allocation for
readonly segment variables, program allocation for global segment variables, and automatic allocation
for all other variables.

70 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 71

program allocation

Causes the HSA runtime to perform a single allocation for the variable definition.

In HSAIL all references to the variable access the same single allocation. An lda instruction
performed on the variable returns a segment address that can be used by any agent.

The variable's global segment address can be converted to a flat address and used by any agent.

An HSA runtime query can be used to obtain the segment address of the variable which can be
used to access it by any agent.

The definition of the variable may have an initializer. However, image and sampler initializers are
not allowed (see 7.1.7. Image Creation and Image Handles (page 211) and 7.1.8. Sampler Creation
and Sampler Handles (page 214)).

agent allocation

Causes the HSA runtime to perform a separate allocation for the variable for each kernel agent on
which a code object that references the variable is loaded (see 4.2. Program, Code Object, and
Executable (page 48) and 6.2.5. Agent Allocation (page 171)). Each separate allocation will have a
unique global segment address. The results are undefined if the variable is accessed from any
agent other than the one it is associated with, except by HSA runtime copy operations. An
implementation may allocate such variables on special agent local memory that is not directly
accessible from other agents.

In HSAIL, any access to the variable by a kernel executing on a kernel agent will access the variable
allocation that is associated with that agent. An lda instruction performed on the variable will
obtain the distinct segment address for the allocation associated with the kernel agent on which it
is executed, but the results are undefined if any other agent accesses that address. The variable's
global segment address can be converted to a flat address, but the results are undefined if any
other agent accesses that address.

An HSA runtime query can be used to obtain the segment address of the variable for a specified
agent.

The definition of the variable may have an initializer. Every separate allocation will be initialized. For
image and sampler initializers, the format of the agent with which the allocation is associated will
be used (see 7.1.7. Image Creation and Image Handles (page 211) and 7.1.8. Sampler Creation and
Sampler Handles (page 214)).

automatic allocation

Causes variables to be automatically allocated at the start of the variable's storage duration. See
4.11. Storage Duration (page 96).

align(n)

Specifies that the storage for the variable must be aligned on a segment address that is an integer
multiple of n. Valid values of n are 1, 2, 4, 8, 16, 32, 64, 128 and 256.

For arrays, alignment specifies the alignment of the base address of the entire array, not the alignment
of individual elements.

Without an align qualifier, the variable will be naturally aligned. That is, the segment address
assigned to the variable will be a multiple of the variable's base type length.

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Array variables are naturally aligned to the size of the array element type (not the size of the entire
array).

Packed data types are naturally aligned to the size of the entire packed type (not the size of the each
element). For example, the s32x4 packed type (four 32-bit integers) is naturally aligned to a 128-bit
boundary.

If an alignment is specified, it must be equal to or greater than the variable's natural alignment. Thus,
global_f64 &x[10] must be aligned on a 64-bit (8-byte) boundary. For example, align(8)
global_f64 &x[10] is valid, but smaller values of n are not valid.

If the segment of the variable can be accessed by a flat address, then the alignment also specifies that
the flat address is a multiple of the variable's alignment.

The lda instruction cannot be used to obtain the address of an arg or spill segment variable. However,
any align variable qualifier can serve as a hint of how the variable is accessed, and the finalizer may
choose to honor the alignment if allocating the variable in memory.

const

Specifies that the variable is a constant variable. A constant variable cannot be written to after it has
been defined and initialized. Only global and readonly segment variable definition and declarations can
be marked const. Kernarg segment variables are implicitly constant variables.

Global and readonly segment variable definitions with the const qualifier must have an initializer. If
the initial value needs to be specified by the host application, then only provide variable declarations in
HSAIL modules, and use the HSA runtime to specify the variable definition together with an initial value.

Memory for constant variables remains constant during the storage duration of the variable. See 4.11.
Storage Duration (page 96).

The results are undefined if a store or atomic write or read-modify-write instruction is used with a
constant variable, whether using a segment or flat address expression. It is undefined if
implementations will detect stores or atomic operations to constant variables.

The finalizer might place constant variables in specialized read-only caches.

See 17.9. Constant Access (page 295).

The supported segments are:

Global and readonly

The storage for the variable can be accessed by all work-items in the grid.

Declarations for global and readonly can appear either inside or outside of a kernel or function.
Such variables that appear outside of a kernel or function have module scope. Those defined inside a
kernel or function have function scope. See 4.6.2. Scope (page 78).

The memory layout of multiple variables in the global and readonly segments is implementation
defined, except that the memory address is required to honor the alignment requirements of the
variable's type and any align type qualifier.

72 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 73

Group

The storage for the variable can be accessed by all work-items in a work-group, but not by work-items in
other work-groups. Each work-group will get an independent copy of any variable assigned to the group
segment.

Declarations for group can appear either inside or outside of a kernel or function. Such variables that
appear outside of a kernel or function have module scope. Those defined inside a kernel or function
have function scope. See 4.6.2. Scope (page 78).

The memory layout of multiple variables in the group segment is implementation defined, except that
the memory address is required to honor the alignment requirements of the variable's type and any
align type qualifier.

Private

The storage for the variable is accessible only to one work-item and is not accessible to other work-
items.

Declarations for private can appear either inside or outside of a kernel or function. Such variables
that appear outside of a kernel or function have module scope. Those defined inside a kernel or
function have function scope. See 4.6.2. Scope (page 78).

The memory layout of multiple variables in the private segment is implementation defined, except that
the memory address is required to honor the alignment requirements of the variable's type and any
align type qualifier.

Kernarg

The value of the variable can be accessed by all work-items in the grid. It is a formal argument of the
kernel.

Declarations for kernarg must be in a kernel argument list. Such variables in a kernel definition have
function scope, and those in a kernel declaration have signature scope. See 4.6.2. Scope (page 78).

The memory layout of variables in the kernarg segment is defined in 4.21. Kernarg Segment (page 114).

Spill

The storage for the variable is accessible only to one work-item and is not accessible to other work-
items. Such variables are used to save and restore registers.

Declarations for spill must appear inside a kernel or function. Such variables have function scope.
See 4.6.2. Scope (page 78).

The memory layout of multiple variables in the spill segment is implementation defined, and a finalizer
may promote them to hardware registers. The lda instruction cannot be used to obtain the address of
a spill segment variable. However, any align variable qualifier can serve as a hint of how the variable
is accessed, and the finalizer may choose to honor the alignment if allocating the variable in memory.

Arg

The storage for the variable is accessible only to one work-item and is not accessible to other work-
items. Such variables are used to pass per work-item arguments to functions.

Chapter 4. HSAILSyntax andSemantics 4.3 Module

Chapter 4. HSAILSyntax andSemantics 4.4 Source Text Format

Declarations for arg must appear inside an arg block within a kernel or function code block, within a
function formal argument list, or within a function signature. Such variables that appear inside an
argument scope have argument scope. Those that appear inside a function definition formal argument
list have function scope. Those that appear in a function declaration or function signature formal
argument list have signature scope. See 4.6.2. Scope (page 78).

The memory layout of multiple variables in the arg segment is implementation defined, and a finalizer
may promote them to hardware registers. The lda instruction cannot be used to obtain the address of
an arg segment variable. However, any align variable qualifier can serve as a hint of how the variable
is accessed, and the finalizer may choose to honor the alignment if allocating the variable in memory.

See 4.11. Storage Duration (page 96) for a description of when storage is allocated for variables.

Also see:

l 7.1.7. Image Creation and Image Handles (page 211)

l 7.1.8. Sampler Creation and Sampler Handles (page 214)

Here is an example:

function &fib(arg_s32 %r)(arg_s32 %n)
{

private_s32 %p; // allocate a private variable
// to hold the partial result

ld_arg_s32 $s1, [%n];
cmp_lt_b1_s32 $c1, $s1, 3; // if n < 3 go to return
cbr_b1 $c1, @return;
{

arg_s32 %nm2;
arg_s32 %res;
sub_s32 $s2, $s1, 2; // compute fib (n-2)
st_arg_s32 $s2, [%nm2];
call &fib (%res)(%nm2);
ld_arg_s32 $s2, [%res];

}
st_private_s32 $s2, [%p]; // save the result in p
{

arg_s32 %nm2;
arg_s32 %res;
sub_s32 $s2, $s1, 1; // compute fib (n-1)
st_arg_s32 $s2, [%nm2];
call &fib (%res)(%nm2);
ld_arg_u32 $s2, [%res];

}
ld_private_u32 $s3, [%p]; // add in the saved result
add_u32 $s2, $s2, $s3;
st_arg_s32 $s2, [%r];

@return: ret;
};

4.4 Source Text Format
Source text sequences are ASCII characters.

The source text character set consists of 96 characters: the space character, the control characters
representing horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
_ { } [] # () < > % : ; . ? * + - / ^ & | ~ ! = , \ " ’

74 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 75

HSAIL is case-sensitive.

Lines are separated by the newline character.

The source text is broken into the following lexical tokens:

l TOKEN_COMMENT (see 4.3.1. Annotations (page 55))

l TOKEN_GLOBAL_IDENTIFIER (see 4.6. Identifiers (page 77))

l TOKEN_LOCAL_IDENTIFIER (see 4.6. Identifiers (page 77))

l TOKEN_LABEL_IDENTIFIER (see 4.6. Identifiers (page 77))

l TOKEN_CREGISTER (see 4.7. Registers (page 79))

l TOKEN_SREGISTER (see 4.7. Registers (page 79))

l TOKEN_DREGISTER (see 4.7. Registers (page 79))

l TOKEN_QREGISTER (see 4.7. Registers (page 79))

l TOKEN_INTEGER_CONSTANT (see 4.8.1. Integer Constants (page 82))

l TOKEN_HALF_CONSTANT (see 4.8.2. Floating-Point Constants (page 83))

l TOKEN_SINGLE_CONSTANT (see 4.8.2. Floating-Point Constants (page 83))

l TOKEN_DOUBLE_CONSTANT (see 4.8.2. Floating-Point Constants (page 83))

l TOKEN_WAVESIZE (see 2.6.2. Wavefront Size (page 30))

l TOKEN_STRING (see 4.5. Strings (next page))

l Tokens for all the terminal symbols of the HSAIL syntax (see 19.2. HSAIL Syntax Grammar in
Extended Backus-Naur Form (EBNF) (page 361))

Lexical tokens can be separated by zero or more white space characters: space, horizontal tab, new-line,
vertical tab and form-feed. Whitespace is required between lexical tokens that can include alphabetic or
numeric characters.

See 19.1. HSAIL Lexical Grammar in Extended Backus-Naur Form (EBNF) (page 360).

Chapter 4. HSAILSyntax andSemantics 4.4 Source Text Format

Chapter 4. HSAILSyntax andSemantics 4.5 Strings

4.5 Strings
Figure 4–50 TOKEN_STRING Syntax Diagram

A string is a sequence of characters and escape sequences enclosed in double quotes (such as "abc").

Any character except for double quote ("), backslash (\) or newline can appear in the sequence.

A backslash in the character string is treated specially. It starts an escape sequence.

There are three kinds of escape sequences:

l A backslash followed by up to three octal numbers (leading 0 not needed). For example, '\012' is a
newline.

l A backslash followed by an x (or X) and a hexadecimal number.

l A backslash followed by one of the following characters:

o \ - backslash character (octal 134)

o ' - single quote character (octal 047)

o " - double quote character (octal 042)

o ? - question mark character (octal 077)

o a - alarm or bell character (octal 007)

o b - backspace character (octal 010)

o f - formfeed character (octal 006)

o n - newline character (octal 012)

o r - carriage-return character (octal 015)

o t - tab character (octal 011)

o v - vertical tab character (octal 013)

This is a subset of the full C character-string constants, because Unicode forms u,U,L are not
supported.

In Extended Backus-Naur Form, a string is called a TOKEN_STRING.

76 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 77

4.6 Identifiers
An identifier is a sequence of characters used to identify an HSAIL object.

Figure 4–51 TOKEN_GLOBAL_IDENTIFIER Syntax Diagram

Figure 4–52 TOKEN_LOCAL_IDENTIFIER Syntax Diagram

Figure 4–53 TOKEN_LABEL_IDENTIFIER Syntax Diagram

Figure 4–54 identifier Syntax Diagram

4.6.1 Syntax

Identifiers that are register names must start with a dollar sign ($). See 4.7. Registers (page 79).

Identifiers that are labels must start with an at sign (@). See 4.9. Labels (page 94).

Identifiers that are not labels cannot contain an at sign (@).

Non-label identifiers with function scope start with a percent sign (%).

Non-label identifiers with module scope start with an ampersand (&).

Identifiers must not start with the characters __hsa.

Chapter 4. HSAILSyntax andSemantics 4.6 Identifiers

Chapter 4. HSAILSyntax andSemantics 4.6 Identifiers

The Extended Backus-Naur Form syntax is:

l A global identifier is referred to as a TOKEN_GLOBAL_IDENTIFIER.

l A local identifier is referred to as a TOKEN_LOCAL_IDENTIFIER.

l A label is referred to as a TOKEN_LABEL.

l A register is referred to as a TOKEN_CREGISTER, TOKEN_SREGISTER, TOKEN_DREGISTER, or
TOKEN_QREGISTER. See 4.7. Registers (facing page).

The second character of an identifier must be a letter (either lowercase a-z or uppercase A-Z) or the
underscore (_) character.

The remaining characters of an identifier can be either letters, digits, underscore (_), or dot (.).

All characters in the name of an identifier are significant.

Every HSAIL implementation must support identifiers with names whose size ranges from 1 to 1024
characters. Implementations are allowed to support longer names.

The same identifier can denote different things at different points in the module. See also 4.3.8. Variable
(page 64).

4.6.2 Scope

An identifier is visible (that is, can be used) only within a section of program text called a scope. Different
objects named by the same identifier within a single module must have different scopes.

There are four kinds of scopes:

l Module

l Function

l Argument

l Signature

Every identifier has scope determined by the placement of the declaration or definition that it names:

l If the declaration or definition appears outside of any function or kernel code block, the identifier has
module scope, which extends from the point of declaration or definition to the end of the module.
The identifier in the module header has module scope.

l If an identifier appears as a formal argument definition in a kernel or function definition, it has
function scope, which extends from the point of declaration to the end of the kernel or function's
code block.

l If an identifier appears as an arg segment variable definition in an arg block, it has argument scope,
which extends from the point of definition to the end of the arg block. See 10.2. Function Call
Argument Passing (page 244).

l Label definitions have function scope which extends from the start to the end of the enclosing code
block (even if defined in a nested arg block).

l Any registers used in a kernel or function code block are implicitly defined. Registers have function
scope which extends from the start to the end of the enclosing code block (even if used in a nested
arg block).

78 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 79

l If the definition appears inside a kernel or function code block, the identifier has function scope,
which extends from the point of definition to the end of the code block.

l If an identifier appears as a formal argument definition of a kernel declaration, function declaration,
or signature definition, then it has signature scope, which extends from the point of definition to the
end of the kernel declaration, function declaration, or signature definition respectively.

HSAIL uses a single name space for each scope for all object kinds. In HSAIL the following object kinds can
be named by an identifier: kernel, function, signature, variable, fbarrier, label, and register.

Kernels, functions, signatures, variables, and fbarriers declared or defined outside a kernel or function with
module scope must have unique names within the enclosing module, but are not required to be unique with
respect to the module scopes of other modules. The exception is that there can be zero or more
declarations and at most one definition of the same object by specifying the same name for matching
objects. Additionally, the linkage rules require there only be at most one module scope name that is the
definition of an object with program linkage amongst all the modules that belong to the same program.

Variables, fbarriers, labels, and registers defined inside a kernel or function must have unique names within
the enclosing function scope, but are not required to be unique with respect to other function scopes that
can define distinct objects with the same name.

Arg segment variable names defined inside an arg block have argument scope and must be unique within
the argument scope, but can have the same name as the arg segment variables in other argument scopes,
or the names of objects in the enclosing function scope (in which case the arg segment variable name hides
the function scope name).

4.7 Registers
Figure 4–55 TOKEN_CREGISTER Syntax Diagram

Figure 4–56 TOKEN_SREGISTER Syntax Diagram

Figure 4–57 TOKEN_DREGISTER Syntax Diagram

Figure 4–58 TOKEN_QREGISTER Syntax Diagram

Chapter 4. HSAILSyntax andSemantics 4.7 Registers

Chapter 4. HSAILSyntax andSemantics 4.7 Registers

Figure 4–59 registerNumber Syntax Diagram

There are four types of registers:

l Control registers (c registers)

These hold a single bit value.

Compare instructions write into control registers. Conditional branches test control register values.

Control registers are similar to CPU condition codes.

These registers are named $c0, $c1, $c2, and so on.

In the Extended Backus-Naur Form syntax, a control register is referred to as a TOKEN_
CREGISTER.

l 32-bit registers (s registers)

These can hold signed integers, unsigned integers, or floating-point values.

These registers are named $s0, $s1, $s2, and so on.

In the Extended Backus-Naur Form syntax, a 32-bit register is referred to as a TOKEN_SREGISTER.

l 64-bit registers (d registers)

These can hold signed long integers, unsigned long integers, or double float values.

These registers are named $d0, $d1, $d2, and so on.

In the Extended Backus-Naur Form syntax, a 64-bit register is referred to as a TOKEN_DREGISTER.

l 128-bit registers (q registers)

These hold packed data.

These registers are named $q0, $q1, $q2, and so on.

In the Extended Backus-Naur Form syntax, a 128-bit register is referred to as a TOKEN_
QREGISTER.

Registers follow these rules:

l Registers are not declared in HSAIL.

l All registers have function scope, so there is no way to pass an argument into a function through a
register.

l All registers are preserved at call sites.

l Every work-item has its own set of registers.

l No registers are shared between work-items.

l It is not possible to take the address of a register.

80 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 81

l The c registers in HSAIL are a single pool of resources per function scope. It is an error if the value
(c
max

+1) exceeds 128 for any kernel or function definition, where c
max

is the highest c register
number in the kernel or function code block, or -1 if no c registers are used. For example, if a
function code block only uses registers $c0 and $c7, then c

max
is 7 not 2.

l The s, d, and q registers in HSAIL share a single pool of resources per function scope. It is an error if
the value ((s

max
+1) + 2*(d

max
+1) + 4*(q

max
+1)) exceeds 2048 for any kernel or function

definition, where s
max

, d
max

, and q
max

are the highest register number in the kernel or function
code block for the corresponding register type, or -1 if no registers of that type are used. For
example, if a function code block only uses registers $s0 and $s7, then s

max
is 7 not 2.

Some architectures have an inverse relationship between register usage and occupancy, and high-level
compilers may choose to target fewer registers than the HSAIL register limits to optimize for performance.
Registers are a limited resource in HSAIL, so high-level compilers are expected to manage registers
carefully.

4.8 Constants
In text format, HSAIL supports four kinds of constants: integer constant, floating-point constant, typed
constant, and aggregate constant. Constant values can be used to specify the initial value of variable
definitions, and the value of immediate operands of instructions and directives.

Figure 4–60 initializerConstant Syntax Diagram

Figure 4–61 immediateOperand Syntax Diagram

Chapter 4. HSAILSyntax andSemantics 4.8 Constants

Chapter 4. HSAILSyntax andSemantics 4.8 Constants

All constants must be compatible with the data type of the expected value according to the rules in Table 4–
1 (page 92). The data type of the expected value is determined by where the constant is used:

l Data initialization directives: the expected value type is the type of the variable being initialized.

l Instruction source operands: the expected value type is the type of the operand defined by the
instruction.

l Instruction address expressions: the expected value type is an unsigned integer of the address size.
See Table 2–3 (page 40). This is true if the integer constant specifies an absolute address or is an
address offset for a base address specified by a symbol or register.

l Directive and module header operands: the expected value type of each operand is specified by the
directive.

l Other usage: the expected value type used is u64. These include array dimensions, image size
properties, alignment, equivalence class, the integer constant in the signal typed constant for the null
signal handle, and so forth.

4.8.1 Integer Constants

Figure 4–62 TOKEN_INTEGER_CONSTANT Syntax Diagram

Figure 4–63 decimalIntegerConstant Syntax Diagram

Figure 4–64 hexIntegerConstant Syntax Diagram

Figure 4–65 octalIntegerConstant Syntax Diagram

Integer constants are 64-bit unsigned values. In the Extended Backus-Naur Form syntax, an integer constant
is referred to as a TOKEN_INTEGER_CONSTANT.

82 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 83

Integer constants are only valid for integer types, and for bit types less than or equal to 64 bits. See 4.13.1.
Base Data Types (page 99) and 4.8.5. How Text Format Constants Are Converted to Bit String Constants
(page 92). The type size determines the number of least significant bits of the 64-bit integer constant value
that are used; any remaining bits are ignored. For signed integer types, the bits are treated as a two's
complement 64-bit signed value.

Some uses of integer constants allow an optional + and − sign before the integer constant. For −, the integer
constant value is treated as a two's complement 64-bit value and negated, regardless of whether the
constant type is a signed integer type, and the resulting bits used as the value.

Figure 4–66 integerConstant Syntax Diagram

In BRIG, the size of an integer constant immediate operand value must be the number of bytes needed by
the constant type. For b1, a single byte is used and must be 0 or 1.

It is possible in text format to write integer constant values that are bigger than needed. For example, in the
following code, the 24 and 25 are 64-bit unsigned constant values, but the variable initializer and instruction
expect 32-bit signed types. The least signficant 32 bits of the 64-bit integer constant are treated as a 32-bit
signed value:

global_s32 %someident = 24;
add_s32 $s1, 24, 25;

Integer constants can be written in decimal, hexadecimal, or octal form, following the C++ language syntax:

l A decimal integer constant starts with a non-zero digit. See Figure 4–63 (previous page).

l A hexadecimal integer constant starts with 0x or 0X. See Figure 4–64 (previous page).

l An octal integer constant starts with 0. See Figure 4–65 (previous page).

4.8.2 Floating-Point Constants

Figure 4–67 TOKEN_HALF_CONSTANT Syntax Diagram

Chapter 4. HSAILSyntax andSemantics 4.8 Constants

Chapter 4. HSAILSyntax andSemantics 4.8 Constants

Figure 4–68 TOKEN_SINGLE_CONSTANT Syntax Diagram

Figure 4–69 TOKEN_DOUBLE_CONSTANT Syntax Diagram

Figure 4–70 decimalFloatConstant Syntax Diagram

Figure 4–71 hexFloatConstant Syntax Diagram

Figure 4–72 ieeeHalfConstant Syntax Diagram

Figure 4–73 ieeeSingleConstant Syntax Diagram

84 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 85

Figure 4–74 ieeeDoubleConstant Syntax Diagram

Floating-point constants are represented as either:

l 16-bit single-precision

It is an error to use a half-precision float constant unless the expected value type is f16 or b16. See
4.8.5. How Text Format Constants Are Converted to Bit String Constants (page 92). In Extended
Backus-Naur Form syntax, a half-precision float constant is referred to as a TOKEN_HALF_
CONSTANT.

l 32-bit single-precision

It is an error to use a single-precision float constant unless the expected value type is f32 or b32.
See 4.8.5. How Text Format Constants Are Converted to Bit String Constants (page 92). In Extended
Backus-Naur Form syntax, a single-precision float constant is referred to as a TOKEN_SINGLE_
CONSTANT.

l 64-bit double-precision

It is an error to use a double-precision float constant unless the expected value type is f64 or b64.
See 4.8.5. How Text Format Constants Are Converted to Bit String Constants (page 92). In Extended
Backus-Naur Form syntax, a double-precision float constant is referred to as a TOKEN_DOUBLE_
CONSTANT. Neither the 64-bit floating-point type (f64) nor the 64-bit double-precision floating-point
constant formats are supported by the Base profile (see 16.2.1. Base Profile Requirements (page
289)).

Some uses of floating-point constants allow an optional + and − sign before the floating-point constant. For
−, the sign bit of the floating-point representation of the constant type is inverted, no other bits are changed,
and the resulting bits are used as the value.

Figure 4–75 floatConstant Syntax Diagram

Chapter 4. HSAILSyntax andSemantics 4.8 Constants

Chapter 4. HSAILSyntax andSemantics 4.8 Constants

Figure 4–76 halfConstant Syntax Diagram

Figure 4–77 singleConstant Syntax Diagram

Figure 4–78 doubleConstant Syntax Diagram

In BRIG, the size of a floating-point constant immediate operand value must be the number of bytes needed
by the constant type.

Floating-point constants can be written in decimal or hexadecimal form following the C++ language syntax.
In addition, they can be specified using the IEEE/ANSI Standard 754-2008 binary interchange format:

l A decimal floating-point constant can be written with a significand part, a decimal exponent part, and
a float size suffix. The significand part represents a rational number and consists of a sequence of
decimal digits (the whole number) followed by an optional fraction part (a period followed by a
sequence of decimal digits). The decimal exponent part is an optionally signed decimal integer that
indicates the power of 10. The significand is raised to that power of 10. The float size suffix indicates
the type: h or H indicates 16 bits; f or F indicates 32 bits; d or D indicates 64 bits. The float size suffix
can be omitted for double-precision decimal float constants, but is required for half-precision and
single-precision decimal float constants. The decimal floating-point constant is converted to the
memory representation using convert to nearest even (see 4.19.2. Floating-Point Rounding (page
109)). See Figure 4–70 (page 84).

86 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 87

l A hexadecimal floating-point constant can be written using the C99 format. It consists of a
hexadecimal prefix of 0x or 0X, a significand part, a binary exponent part, and a float size suffix. The
significand part represents a rational number and consists of a sequence of hexadecimal digits (the
whole number) followed by an optional fraction part (a period followed by a sequence of
hexadecimal digits). The binary exponent part is an optionally signed decimal integer that indicates
the power of 2. The significand is raised to that power of 2. The float size suffix indicates the type: h
or H indicates 16 bits; f or F indicates 32 bits; d or D indicates 64 bits. The float size suffix can be
omitted for double-precision hexadecimal float constants, but is required for half-precision and
single-precision hexadecimal float constants. See Figure 4–71 (page 84).

l An IEEE/ANSI Standard 754-2008 binary interchange double-precision floating-point constant begins
with 0d or 0D followed by 16 hexadecimal digits. A single-precision floating-point constant begins
with 0f or 0F followed by eight hexadecimal digits. A half-precision floating-point constant begins with
0h or 0H followed by four hexadecimal digits.

A double like 12.345 can be written as 0d4028b0a3d70a3d71 or 0x1.8b0a3d70a3d71p+3.

4.8.3 Typed Constants

A non-array typed constant consists of a data type, followed by parenthesized arguments to provide a value
of that type. The byte size of a non-array typed constant is the byte size of the data type.

Figure 4–79 typedConstant Syntax Diagram

Bit typed constants are not supported. Instead the value of a bit type can be specified using one of the other
constant kinds such as an integer, floating-point, or packed constant.

An integer typed constant requires the argument to be an integer constant which is truncated to the size of
the integer type.

Chapter 4. HSAILSyntax andSemantics 4.8 Constants

Chapter 4. HSAILSyntax andSemantics 4.8 Constants

Figure 4–80 integerTypedConstant Syntax Diagram

A floating-point typed constant requires the argument to be a floating-point constant that is the same byte
size as the floating-point type. The 64-bit floating-point type (f64) is not supported by the Base profile (see
16.2.1. Base Profile Requirements (page 289)).

Figure 4–81 floatTypedConstant Syntax Diagram

For information on packed type constants, see 4.14.2. Packed Type Constants (page 103).

For information on image handle type constants, see 7.1.7. Image Creation and Image Handles (page 211).
They are allowed for constants used as a variable initializer and cause a corresponding image to be created
with the properties specified. They are also allowed as the operand of a pragma directive (see 13.3. pragma
Directive (page 276)).

For information on sampler handle type constants, see 7.1.8. Sampler Creation and Sampler Handles (page
214). They are allowed for constants used as a variable initializer and cause a corresponding sampler to be
created with the properties specified. They are also allowed as the operand of a pragma directive (see 13.3.
pragma Directive (page 276)).

A signal handle typed constant requires the argument to be an integer constant with the value zero. This
represents the null signal handle. The integer constant is treated as a u64 type.

Figure 4–82 signalTypedConstant Syntax Diagram

An array typed constant consists of an array element data type, followed by “[]”, followed by parenthesized
elements to provide a value of each array element. The array element data type can be any type except an
array type or a bit type. Each array element must be a constant that is compatible with the array element
data type according to the rules in Table 4–1 (page 92). The byte size of an array typed constant is the byte
size of the array element data type multiplied by the number of array elements

88 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 89

Figure 4–83 arrayTypedConstant Syntax Diagram

Figure 4–84 integerArrayTypedConstant Syntax Diagram

Chapter 4. HSAILSyntax andSemantics 4.8 Constants

Chapter 4. HSAILSyntax andSemantics 4.8 Constants

Figure 4–85 halfArrayTypedConstant Syntax Diagram

Figure 4–86 singleArrayTypedConstant Syntax Diagram

Figure 4–87 doubleArrayTypedConstant Syntax Diagram

90 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 91

Figure 4–88 packedArrayTypedConstant Syntax Diagram

Figure 4–89 imageArrayTypedConstant Syntax Diagram

Figure 4–90 samplerArrayTypedConstant Syntax Diagram

Figure 4–91 signalArrayTypedConstant Syntax Diagram

4.8.4 Aggregate Constants

An aggregate constant consists of a comma separated list of typed constants and alignment requests
enclosed in curly brackets.

Figure 4–92 aggregateConstant Syntax Diagram

Chapter 4. HSAILSyntax andSemantics 4.8 Constants

Chapter 4. HSAILSyntax andSemantics 4.8 Constants

Figure 4–93 aggregateConstantItem Syntax Diagram

The bytes of the typed constant aggregate element values are ordered consecutively starting at the lowest
addressed byte and do not have to be the same type. The byte size of each value is the byte size of the
typed constant. There is no padding between values, therefore values need not be naturally aligned. This
allows aggregate constants to provide a constant value for arbitrary structures which have different field
types, as well as for arrays that have the same type for each element. The byte size of an aggregate
constant is the sum of the sizes of its elements.

In addition, an aggregate constant element can be an alignment request: align(n). This causes enough
zero bytes to be generated to ensure the next element starts on the specified alignment relative to the start
of the aggregate constant. If the alignment request appears as the last element, it causes zero bytes to be
generated to make the aggregate constant byte size a multiple of the specified alignment. An aggregate
constant cannot consist of only alignment request elements. Valid values of n are 1, 2, 4, 8, 16, 32, 64, 128,
and 256.

An aggregate constant is used as the initializer of a bit type array variable. Any alignment requests the
aggregate initializer contains do not influence the alignment of the variable it initializes.

Figure 4–94 aggregateConstantAlign Syntax Diagram

4.8.5 How Text Format Constants Are Converted to Bit String Constants

Tools can convert between the HSAIL text format and the BRIG binary format. See Table 4–1 (below), which
describes how HSAIL text format constants are converted to bit string constants used in BRIG. What
happens with the conversion depends on the data type expected by the operation.

Table 4–1 Text Constants and Results of the Conversion

Kind of text
format constant
provided (see
4.8. Constants
(page 81))

Data type of expected value (see 4.13. Data Types (page 99))

Bit type Signed/unsigned
integer type

Floating-
point
type

Packed
type

Image
type

Sampler
type

Signal
type

Non-
bit
type

Bit
type
array

Integer constant Truncate Truncate Error Error Error Error Error Error Error

92 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 93

Kind of text
format constant
provided (see
4.8. Constants
(page 81))

Data type of expected value (see 4.13. Data Types (page 99))

Bit type Signed/unsigned
integer type

Floating-
point
type

Packed
type

Image
type

Sampler
type

Signal
type

Non-
bit
type

Bit
type
array

Floating-point
constant

Length-
only rule

Error Type
and
length
rule

Error Error Error Error Error Error

Integer typed
constant

Length-
only rule

Type and length
rule

Error Error Error Error Error Error Error

Float typed
constant

Length-
only rule

Error Type
and
length
rule

Error Error Error Error Error Error

Packed typed
constant

Length-
only rule

Error Error Type
and
length
rule

Error Error Error Error Error

Image typed
constant

Error Error Error Error Type
and
length
rule

Error Error Error Error

Sampler typed
constant

Error Error Error Error Error Type
and
length
rule

Error Error Error

Signal typed
constant

Error Error Error Error Error Error Type
and
length
rule

Error Error

Array typed
constant

Error Error Error Error Error Error Error Type
and
length
rule

Error

Aggregate
constant

Error Error Error Error Error Error Error Error Length-
only
rule

Truncation for an integer value in the text is as follows: the value is input as 64 bits in 2s compliment, then
the length needed is compared to the size the instruction needs:

l If the instruction needs 64 bits or fewer, the 64-bit value is truncated if necessary.

l If the instruction needs more than 64 bits, it is an error.

For example:

add_s64 $d0, $d0, 0xfffffffff; // Legal: 9 f’s stored as 0x0000000fffffffff.

The 9 f’s represents a 64-bit integer constant with 36 non-zero bits. The operation uses an integer type s64,
so the number of bits match identically in BRIG. This would be stored as s64 0x0000000fffffffff.

add_s32 $s0, $s0, 0xfffffffff; // Legal: 9 f’s truncated and stored as 0xffffffff.

Chapter 4. HSAILSyntax andSemantics 4.8 Constants

Chapter 4. HSAILSyntax andSemantics 4.9 Labels

The s32 is 32 bits, the constant would be truncated and stored as s32 0xffffffff.

It is not possible to provide an integer constant to a 128-bit data type:

mov_b128 $q0, 0xfffffffff; // Illegal: integer constant is evaluated as 64 bits
// and instruction requires 128 bits.

However, a packed constant can be used for a 128-bit data type. For example, these instructions are legal:

mov_b128 $q1, u32x4(1, 2, 3, 4); // Legal to use packed constant of same size.
mov_b128 $q1, u64x2(1, 2); // Legal to use packed constant of same size.

The type and length match rule is the following: the number of bits and the type must be the same;
otherwise this is an error.

add_pp_u64x2 $q1, $q0, u64x2(1, 2); // Legal as packed types match.
add_pp_u64x2 $q1, $q0, u32x4(1, 2, 3, 4); // Illegal as packed types do not match even

// though size does.
mov_f32 $s1, 1.0f; // Legal as floating-point constant size matches operand size.
mov_f32 $s1, 1.0d; // Illegal as floating-point constant size does not match operand size.

The length-only rule is the following: the bits in the constant are used provided the number of bits is the
same.

mov_b32 $s1, 3.7f; // Legal as size of floating-point constant and operand type are 32.
mov_b32 $s1, 3.7d; // Illegal as floating-point constant and operand type size mismatch.

For mov_b32 $s1, 3.7f, although the types do not match, the lengths do match, so the binary
representation of value 3.7f is used.

When WAVESIZE is allowed as an immediate operand value, it is treated exactly the same as an integer
constant with a 64-bit value that is equal to the value of WAVESIZE. See 2.6.2. Wavefront Size (page 30).

4.9 Labels
Label identifiers consist of an at sign (@) followed by the name of the identifier (see 4.6. Identifiers (page
77)).

Label definitions consist of a label identifier followed by a colon (:).

Label identifiers cannot be used in any operations except br, cbr, and sbr.

Label identifiers cannot appear in an address expression.

See 8.1. Syntax (page 227).

4.10 Variable Initializers
Variable definitions in the global and readonly segments can specify an initial value. The variable name is
followed by an equals (=) sign and the initial value for the variable.

Figure 4–95 optInitializer Syntax Diagram

It is not possible to initialize variables in segments other than the global and readonly segments.

94 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 95

For a global or readonly segment variable definition with the const qualifier, an initializer is required. For a
global and readonly segment variable without the const qualifier, an initializer is optional.

When a global segment or readonly segment variable is allocated by the HSA runtime (see 4.2. Program,
Code Object, and Executable (page 48)), an initial value is assigned if it has an initializer. The initialization is
performed only once when the memory is allocated.

When a global segment variable is initialized by the HSA runtime, a release memory fence on the global
segment at system memory scope is performed. The results are undefined if a kernel dispatch does not use
appropriate memory synchronization to access the variable after it has been initialized.

A readonly segment variable has agent allocation, and so has distinct memory allocations for each agent
(see 4.3.10. Declaration and Definition Qualifiers (page 69)). When a readonly segment variable is defined
and initialized, the HSA runtime makes each agent allocation value visible to all subsequent dispatches on
the corresponding agent. The HSA runtime can also be used to change the value of a non-const readonly
variable after it has been defined for a specific agent: this also makes the value visible to all subsequent
dispatches on the corresponding agent. The results are undefined if the agent allocation is accessed by
kernel dispatches that were executing before the variable’s definition initialization, or HSA runtime update.

The initial value is specified as a constant (see 4.8. Constants (page 81)):

l If the variable has no array dimension specified, then an integer constant, float constant, or non-
array typed constant is allowed according to the rules in Table 4–1 (page 92) based on the type of the
variable. WAVESIZE is not allowed.

l If the variable has an array dimension specified then an array typed constant or aggregate constant
is allowed according to the rules in Table 4–1 (page 92) based on the array type of the variable.
WAVESIZE is not allowed.

It is an error if the byte size of the constant is not the same as the byte size of the variable: smaller
constants are not zero filled; larger constants are not truncated (except by the integer constant truncation
rules). See 4.8.5. How Text Format Constants Are Converted to Bit String Constants (page 92).

Image and sampler handle typed constants are allowed in variable initializers. When the HSA runtime
allocates the variable, it initializes the handles to reference images and samplers that it also creates which
have the specified properties. See 7.1.7. Image Creation and Image Handles (page 211) and 7.1.8. Sampler
Creation and Sampler Handles (page 214).

For the initialization of signal handles, the initial value can be a signal typed constant with a value of 0 to
indicate the null signal handle.

The array dimension of a variable definition can be left empty, in which case an initializer must be specified.
In this case, the array dimension size is equal to the byte size of the constant initializer divided by the byte
size of the variable element data type. It is an error if the initializer byte size is not an exact multiple of the
variable element data type byte size. Note that the b1 bit type is not allowed for a variable type or initializer
typed constant value so all variables are an integral number of bytes.

Chapter 4. HSAILSyntax andSemantics 4.10 Variable Initializers

Chapter 4. HSAILSyntax andSemantics 4.11 Storage Duration

If there is no initializer, the value of the variable is undefined when it is allocated.

Examples
global_u32 &loc1; // no initializer, value starts as undefined
global_f32 &size = 1.0f;
global_b32 &x = 3.0f; // initializes the identifier &x to the 32-bit value 0x40400000
global_u32 &c[4]; // no initializer, all array element values start as undefined
global_u8 &bg[4] = u8[](1, 2, 3, 4);
global_b8 &bg[4] = {u8(0), u8(0), u8(0), u8(0)};
global_b8 &bh[4] = {u8(0), u16(1), u8(2)};
global_b8 &bi[16] = {f32(1.0f), u16(1), align(8), sig64(0)};
readonly_u8 &days1[] = u8[](31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

// Equivalent to specifying &days1[12]
readonly_b8 &days2[] = {u8(31), u8(28), u8(31), u8(30), u8(31), u8(30),

u8(31), u8(31), u8(30), u8(31), u8(30), u8(31)};
// Equivalent to specifying &days2[12]

global_f32 &bias[] = f32[](-1.0f, 1.0f); // Equivalent to specifying &bias[2]
align(8) const global_b8 &willholddouble[8] = {u8(0), u8(0), u8(0), u8(0),

u8(0), u8(0), u8(0), u8(0)};
decl global_u32 &c[]; // Declarations do not require an array dimension size
global_sig64 &s1 = sig64(0); // Signal handles should only be initialized with 0.
global_sig64 &sa[2] = sig64[](sig64(0), sig64(0x00));
global_sig64 &se[] = sig64[](sig64(0), sig64(0x00), sig64(0)); // Equivalent to &se[3].

4.11 Storage Duration
Global and readonly segment variable definitions can be used to allocate blocks of memory. The memory is
allocated when HSA code objects that have been finalized from an HSAIL program that includes an HSAIL
module containing the definition are loaded into an HSA executable and lasts until the HSA executable is
destroyed (see 4.2. Program, Code Object, and Executable (page 48)). This corresponds to the C++ language
notion of static storage duration. (See the C++ language specification ISO/IEC 14882:2011.)

Kernarg segment variable definitions that appear in a kernel's formal arguments are allocated when a
kernel dispatch starts and released when the kernel dispatch finishes.

Group segment variable definitions that appear inside a kernel, or at module scope, and are used by the
kernel or any of the functions it can call are allocated when a work-group starts executing the kernel, and
last until the work-group exits the kernel. Group segment variable definitions that appear inside any function
that can be called by the kernel are allocated the same way. This is because group segment memory is
shared between all work-items in a work-group, and the work-items within the work-group might execute
the same function at different times. A consequence of this is that, if a function is called recursively by a
work-item, the work-item's multiple activations of the function will be accessing the same group segment
memory. Dynamically allocated group segment memory is also allocated the same way (see 4.20. Dynamic
Group Memory Allocation (page 112)).

Private and spill segment variable definitions that appear inside a kernel are allocated when a work-item
starts executing the kernel, and last until the work-item exits the kernel.

Private segment variable definitions that appear at module scope (spill cannot appear at module scope) and
are used by a kernel, or any of the functions it can call, are allocated when a work-item starts executing the
kernel, and last until the work-item exits the kernel.

Private and spill segment variable definitions that appear inside a function are allocated each time the
function is entered by a work-item, and last until the work-item exits the function.

96 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 97

Arg segment variable definitions inside an arg block are allocated each time the arg block is entered by a
work-item, and last until the work-item exits the arg block.

Recursive calls to a function will allocate multiple copies of private, spill, and arg segment variables defined
in the function's code block. This allows full support for recursive functions and corresponds to the C++
language notion of automatic storage duration. (See the C++ language specification ISO/IEC 14882:2011.) If
a finalizer determines there is no recursion, it can choose to allocate these statically and avoid requiring a
stack.

Fbarrier definitions have the same allocation as group segment variables.

Kernel and indirect function definitions allocate a kernel descriptor and indirect function descriptor
respectively the same way as global segment variable definitions.

For more information see 4.2. Program, Code Object, and Executable (page 48) and 4.3. Module (page 53).

4.12 Linkage
Linkage determines the rules that specify how a name (kernel, function, variable, or fbarrier) refers to an
object. It can allow the same name within a single module, or in multiple modules, to refer to the same
object.

See 4.6.2. Scope (page 78).

4.12.1 Program Linkage

A name of a kernel, function, variable, or fbarrier in one module can refer to an object with the same name
defined in a different module. The two names are linked together. Only one module in a program is allowed
to have a definition for the name, and must be marked prog. In all other modules that refer to the same
object, the name must be a declaration, and must be marked decl prog. Objects that can be linked
together in this way are said to have program linkage.

Global and readonly segment variables with program linkage may also be linked to defintions outside the
HSAIL program using the HSA executable. In this case the name must be marked as a declaration in all
modules of the program. The HSA runtime must be used to define the name for an executable in which the
code object produced by the finalizer from the program will be loaded (see 4.2. Program, Code Object, and
Executable (page 48)). For agent allocation variables, it is required to define the name for each agent onto
which the code object is loaded (see 6.2.5. Agent Allocation (page 171)).

A name can be both declared and defined in the same module.

Only module scope program linkage declarations can be marked decl prog.

Only module scope program linkage definitions can be marked prog.

A kernel or function declaration marked decl prog cannot have a body, because that would make it a
definition.

A variable marked decl prog is not a definition, so it cannot have an initializer.

No definition or declaration for the same name can have both module and program linkage in the same
module.

Module scope objects are: global, group, private and readonly segment variables, kernel, function and
fbarriers.

The finalizer does not allocate space for names marked decl prog, only for those marked prog.

Chapter 4. HSAILSyntax andSemantics 4.12 Linkage

Chapter 4. HSAILSyntax andSemantics 4.12 Linkage

For example:

// program linkage declaration: says it is defined elsewhere
// in the same module or is defined in another module.
decl prog function &foo()();
// ...

// program linkage definition: contains the body
prog function &foo()()
{
// ... the body

};

4.12.2 Module Linkage

A name of a kernel, function, variable, or fbarrier in one module can be restricted to only be visible in a
single module. All declarations and definitions with the same name in a single module refer to the same
object, and declarations must be marked decl. The same name can appear in other modules but refers to
a different object. Objects that are linked together in this way are said to have module linkage.

A module must have at most one module linkage definition for the name.

A module can have zero or more module linkage declarations for the name.

Only module scope module linkage declarations can be marked decl.

Only module scope module linkage definitions can omit decl.

A kernel or function declaration marked decl cannot have a body, because that would make it a definition.

A variable marked decl is not a definition, so it cannot have an initializer.

No definition or declaration for the same name can have both module and program linkage in the same
module.

Module scope objects are: global, group, private and readonly segment variables, kernel, function, and
fbarriers.

The finalizer does not allocate space for names marked decl, only for those that are definitions.

For example:

decl function &foo()(); // module linkage declaration:
// says it is defined elsewhere
// in the same module.

// ...

function &foo()()
{ // module linkage definition: contains the body
// ... the body

};

4.12.3 Function Linkage

Definitions in function scope are only visible in the corresponding code block. The same name can appear in
different function scopes and refers to different objects. Only definitions are allowed in function scope.

Function scope objects are: global, group, private, spill and readonly segment variables; kernarg segment
variables that are kernel definition formal arguments; arg segment variables that are function definition
formal arguments; labels and fbarriers.

98 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 99

For example:

function &foo()()
{
global_u32 %v; // function linkage definition:

// only visible in function &foo.
// ...

};

4.12.4 Arg Linkage

Definitions in argument scope are only visible in the corresponding arg block. The same name can appear in
function scopes and different arg scopes and refers to different objects. Only definitions are allowed in
argument scope.

Argument scope objects are: arg segment variables in an arg block.

For example:

function &foo()()
{
// ...
{ // Start of arg block
arg_u32 %v; // arg linkage definition:

// only visible in arg block.
// ...

} // end of arg block
// ...

};

4.12.5 None Linkage

Definitions in signature scope are only visible in the associated formal argument lists. They do not refer to
any object. The same name can appear in other scopes and refer to different objects.

Signature scope objects are: arg segment variables in the formal argument list of kernel declaration,
function declarations, and signature definitions.

For example:

// none linkage: %x only visible in signature and has no allocation.
signature &foo()(arg_u32 %x);

4.13 Data Types

4.13.1 Base Data Types

HSAIL has four base data types, each of which supports a number of bit lengths. See Table 4–2 (below).

Table 4–2 Base Data Types

Type Description Possible lengths in bits
b Bit type 1, 8, 16, 32, 64, 128
s Signed integer type 8, 16, 32, 64
u Unsigned integer type 8, 16, 32, 64
f Floating-point type 16, 32, 64

A compound type is made up of a base data type and a length.

Chapter 4. HSAILSyntax andSemantics 4.13 Data Types

Chapter 4. HSAILSyntax andSemantics 4.13 Data Types

The 64-bit floating-point type (f64) is not supported by the Base profile (see 16.2.1. Base Profile
Requirements (page 289)). This includes segment variable declarations, segment variable definitions,
double-precision floating-point constants and instructions.

Most instructions specify a single compound type, used for both destinations and sources. However, the
conversion instructions (cvt, ftos, stof, and segmentp) specify an additional compound type for the
sources. The order is destination compound type followed by the source compound type.

The finalizer might perform some checking on operand sizes.

4.13.2 Packed Data Types

Packed data allows multiple small values to be treated as a single object.

Packed data lengths are specified as an element size in bits followed by an x followed by a count. For
example, 8x4 indicates that there are four elements, each of size 8 bits.

See Table 4–3 (below).

Table 4–3 Packed Data Types and Possible Lengths

Type Description Lengths for 32-bit types Lengths for 64-bit types Lengths for 128-bit types
s Signed integer 8x4, 16x2 8x8, 16x4, 32x2 8x16, 16x8, 32x4, 64x2
u Unsigned integer 8x4, 16x2 8x8, 16x4, 32x2 8x16, 16x8, 32x4, 64x2
f Floating-point 16x2 16x4, 32x2 16x8, 32x4, 64x2

32-bit sizes are:

l 8x4 — four bytes; can be used with s and u types

l 16x2 — two shorts or half-floats; can be used with s, u, and f types

64-bit sizes are:

l 8x8 — eight bytes; can be used with s and u types

l 16x4 — four shorts or half-floats; can be used with s, u, and f types

l 32x2 — two integers or floats; can be used with s, u, and f types

128-bit sizes are:

l 8x16 — 16 bytes; can be used with s and u types

l 16x8 — eight shorts or half-floats; can be used with s or u, and f types

l 32x4 — four integers or floats; can be used with s, u, and f types

l 64x2 — two 64-bit integers or two doubles; can be used with s, u, and f types

The 64-bit floating-point packed type (f64x2) is not supported by the Base profile (see 16.2.1. Base Profile
Requirements (page 289)). This includes segment variable declarations, segment variable definitions,
packed constants and instructions.

100 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 101

4.13.3 Opaque Data Types

HSAIL also has the following opaque types:

Table 4–4 Opaque Data Types

Type Description Length in bits
roimg Read-only image handle 64
woimg Write-only image handle 64
rwimg Read-write image handle 64
samp Sampler handle 64
sig32 Signal handle for signal with 32-bit signal value 64
sig64 Signal handle for signal with 64-bit signal value 64

An opaque type has a fixed size, but its representation is implementation defined.

The image handle (roimg, woimg, rwimg) and sampler handle (samp) types are only supported if the
"IMAGE" extension directive has been specified (see 13.1.2. extension IMAGE (page 274)). This includes
segment variable declarations, segment variable definitions and instructions.

The signal handle type for signals with a 64-bit signal value (sig64) is not supported by the small machine
model, and the signal handle type for signals with a 32-bit signal value (sig32) is not supported by the
large machine model (see 2.9. Small and Large Machine Models (page 39)). This includes segment variable
declarations, segment variable definitions and instructions.

For more information see:

l 7.1.7. Image Creation and Image Handles (page 211)

l 7.1.8. Sampler Creation and Sampler Handles (page 214)

l 6.8. Notification (signal) Instructions (page 187)

4.13.4 Array Data Types

HSAIL also has array types. An array has a fixed number of contiguous elements all of the same array
element type. The array element type can be any type except an array type or b1. The size of the array type
is the size of the array element type multiplied by the number of elements in the array.

4.14 Packing Controls for Packed Data
Certain HSAIL instructions operate on packed data. Packed data allows multiple small values to be treated
as a single object. For example, the u8x4 data type uses 32 bits to hold four unsigned 8-bit bytes.

Instructions on packed data have both a data type and a packing control. The packing control indicates how
the instruction selects elements.

See 4.13.2. Packed Data Types (previous page).

The packing controls differ depending on whether an instruction has one source input or two.

See the tables below.

Table 4–5 Packing Controls for Instructions With One Source Input

Control Description
p The single source is treated as packed. The instruction is applied to each element separately.

Chapter 4. HSAILSyntax andSemantics 4.14 PackingControls for Packed Data

Chapter 4. HSAILSyntax andSemantics 4.14 PackingControls for Packed Data

Control Description
p_sat Same as p, except that each result is saturated. (Cannot be used with floating-point values.)
s The lower element of the source is used. The result is written into the lower element of the destination.

The other bits of the destination are not modified.
s_sat Same as s, except that the result is saturated. (Cannot be used with floating-point values.)

Table 4–6 Packing Controls for Instructions With Two Source Inputs

Control Description
pp Both sources are treated as packed. The instruction is applied pairwise to corresponding elements

independently.
pp_sat Same as pp, except that each result is saturated. (Cannot be used with floating-point values.)
ps The first source operand is treated as packed and the lower element of the second source operand is

broadcast and used for all its element positions. The instruction is applied independently pairwise
between the elements of the first packed source operand and the lower element of the second packed
operand. The result is stored in the corresponding element of the packed destination operand.

ps_sat Same as ps, except that each result is saturated. (Cannot be used with floating-point values.)
sp The lower element of the first source operand is broadcast and used for all its element positions, and the

second source operand is treated as packed. The instruction is applied independently pairwise between
the lower element of the first packed operand and the elements of the second packed operand. The
result is stored in the corresponding element of the packed destination operand.

sp_sat Same as sp, except that each result is saturated. (Cannot be used with floating-point values.)
ss The lower element of both sources is used. The result is written into the lower element of the destination.

The other bits of the destination are not modified.
ss_sat Same as ss, except that the result is saturated. (Cannot be used with floating-point values.)

4.14.1 Ranges

For all packing controls, the following applies:

l For u8x4, u8x8, and u8x16, the range of an element is 0 to 255.

l For s8x4, s8x8, and s8x16, the range of an element is −128 to + 127.

l For u16x2, u16x4, and u16x8, the range of an element is 0 to 65535.

l For s16x2, s16x4, and s16x8, the range of an element is −32768 to 32767.

l For u32x2 and u32x4, the range of an element is 0 to 4294967295.

l For s32x2 and s32x4, the range of an element is −2147483648 to 2147483647.

l For u64x2, the range of an element is 0 to 18446744073709551615.

l For s64x2, the range of an element is −9223372036854775808 to 9223372036854775807.

For packing controls with the _sat suffix, the following applies:

l If the result value is larger than the range of an element, it is set to the maximum representable
value.

l If the result value is less than the range of an element, it is set to the minimum representable value.

102 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 103

4.14.2 Packed Type Constants

Figure 4–96 packedTypeConstant Syntax Diagram

HSAIL uses the typed constant notation for writing packed constant values: a packed type followed by a
parenthesized list of constant values is converted to a single packed constant. The number of elements in
the list must match the number of elements in the packed type. The packed element constants are ordered
starting from most significant bit when loaded into a register. Therefore, the memory representation
depends on the endianness of the platform.

For s and u types, the values must be integer. If a value is too large to fit in the format, the lower-order bits
are used.

For f types, the values must be floating-point. The floating-point constant is required to be the same size as
the packed element type and is read as described in 4.8.2. Floating-Point Constants (page 83). The 64-bit
packed floating-point type (f64x2) is not supported by the Base profile (see 16.2.1. Base Profile
Requirements (page 289)).

Bit types are not allowed.

Packed constants are only valid for bit types with the same size as the packed constant, and for packed
types with the same packed type. See 4.8.5. How Text Format Constants Are Converted to Bit String
Constants (page 92).

In the following examples, each pair of lines generates the same constant value:

add_pp_s16x2 $s1, $s2, s16x2(-23,56);
add_pp_s16x2 $s1, $s2, 0xffe90038;

add_pp_u16x2 $s1, $s2, u16x2(23,56);
add_pp_u16x2 $s1, $s2, 0x170038;

add_pp_s16x4 $d1, $d2, s16x4(23,56,34,10);
add_pp_s16x4 $d1, $d2, 0x1700380022000a;

add_pp_u16x4 $d1, $d2, u16x4(1,0,1,0);
add_pp_u16x4 $d1, $d2, 0x1000000010000;

add_pp_s8x4 $s1, $s2, s8x4(23,56,34,10);
add_pp_s8x4 $s1, $s2, 0x1738220a;

add_pp_u8x4 $s1, $s2, u8x4(1,0,1,0);

Chapter 4. HSAILSyntax andSemantics 4.14 PackingControls for Packed Data

Chapter 4. HSAILSyntax andSemantics 4.15 Subword Sizes

add_pp_u8x4 $s1, $s2, 0x1000100;

add_pp_s8x8 $d1, $d2, s8x8(23,56,34,10,0,0,0,0);
add_pp_s8x8 $d1, $d2, 1673124687913156608;

add_pp_s8x8 $d1, $d2, s8x8(23,56,34,10,0,0,0,0);
add_pp_s8x8 $d1, $d2, 0x1738220a00000000;

add_pp_f32x2 $d1, $d2, f32x2(2.0f, 1.0f);
add_pp_f32x2 $d1, $d2, 0x3f80000040000000;

Examples

The following example does four separate 8-bit signed adds:

add_pp_s8x4 $s1, $s2, $s3;

s1 = the logical OR of:

s2[0-7] + s3[0-7]
s2[8-15] + s3[8-15]
s2[16-23] + s3[16-23]
s2[24-31] + s3[24-31]

The following example does four separate signed adds, adding the lower byte of $s3 (bits 0-7) to each of
the four bytes in $s2:

add_ps_s8x4 $s1, $s2, $s3;

4.15 Subword Sizes
The b8, b16, s8, s16, u8, and u16 types are allowed only in loads/stores and conversions.

4.16 Operands
HSAIL is a classic load-store machine, with most ALU operands being either in registers or immediate
values. In addition, there are several other kinds of operands.

The instruction specifies the valid kind of each operand using these rules:

l A source operand and a destination operand can be a register. The rules for register operands are
described below.

l A source operand can be an immediate value if the instruction accepts immediate operands. An
immediate value can be either an integer constant, float constant, typed constant, or WAVESIZE
according to the rules in Table 4–1 (page 92) based on the type of the operand. Note that image,
sampler, and array typed constants are not allowed. See 4.8. Constants (page 81) and 2.6.2.
Wavefront Size (page 30).

l Memory, image, segment checking, segment conversion, and lda instructions take an address
expression as a source operand. See 4.18. Address Expressions (page 106).

l Memory, image, and some copy (move) instructions allow vector operands as source and destination
operands. These comprise a list of registers and, for source operands, immediate values. See 4.17.
Vector Operands (page 106).

l Branch instructions can take a label and list of labels as a source operand. See 8.1. Syntax (page
227).

l Call instructions can take a function identifier, list of function identifiers, and signature identifier as a
source operand. See Chapter 10. Function Instructions (page 243).

104 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 105

The source operands are usually denoted in the instruction descriptions by the names src0, src1, src2,
and so forth.

The destination operand of an instruction must be a register. It is denoted in the instruction descriptions by
the name dest. A destination operand can also be a vector register, in which case it is denoted as a list of
registers with names dest0, dest1, and so forth.

4.16.1 Operand Compound Type

Register, immediate, and address expression operands have an associated compound type. See 4.13. Data
Types (page 99). This defines the size and representation of the value provided by the source operand or
stored in the destination operand.

For most instructions, the compound type used is the instruction's compound type. However, some
instructions have two compound types, the first for the destination operand and the second for the source
operands. In addition, for some instructions, certain operands have a fixed compound type defined by the
operation.

For address expressions, the compound type refers to the value in memory, not the compound type of the
address, which is always u32 or u64 according to the address size. See Table 2–3 (page 40).

For vector registers, the compound type applies to each register, and the rules for register operands below
apply to each individual register. The individual registers do not need to be different for source operands,
but do need to be different for destination operands.

The rules for converting constant values to the source operand compound type are given in 4.8.5. How Text
Format Constants Are Converted to Bit String Constants (page 92).

WAVESIZE is allowed only if the source operand is an integer or bit compound type.

4.16.2 Rules for Operand Registers

The following rules apply to operand registers:

l If the operand compound type is b1 then it must be a c register.

l If the operand compound type is f16 then it must be an s register. The s register representation of
f16 stores the value in the least significant 16 bits, and the most significant 16 bits are undefined.
See 4.19.1. Floating-Point Numbers (page 109).

l If the operand type is u or s with a size less than 32 bits then it must be an s register. (There are no
other types less than 32 bits except for b1 and f16 which are described above.)

For source operands the size of the compound type dictates the number of least significant bits of
the s register that are used.

For destination operands the instruction is performed in the size of the operand compound type. The
result is then zero-extended for u types, and sign-extended for s types, to 32 bits. For example, an
ld_u16 instruction must have an s destination register: a 16-bit value is loaded from memory, zero-
extended to 32 bits, and stored in the s register.

l Otherwise the source operand register size must match the size of its compound type.

Chapter 4. HSAILSyntax andSemantics 4.16 Operands

Chapter 4. HSAILSyntax andSemantics 4.17 Vector Operands

If it is necessary to transfer an integer value in a d register into an s register, or vice versa, the cvt
instruction must be used to do the appropriate truncation or zero/sign extension. Similarly, if it is necessary
to transfer a b1 value in a c register into an s or d register, or vice versa, the cvt instruction must be used
to do the appropriate testing to a b1 value or conversion to a signed or unsigned integer value or a float
value. See 5.19. Conversion (cvt) Instruction (page 159).

4.17 Vector Operands
Several instructions support vector operands.

Both destination and source vector operands are written as a comma-separated list of component
operands enclosed in parentheses.

A v2 vector operand contains two component operands, a v3 vector operand contains three component
operands, and a v4 vector operand contains four component operands.

It is not valid to omit a component operand from the vector operand list.

For a destination vector operand, each component operand must be a register.

For a source vector operand, each component operand can be a register or immediate operand.

The type of the vector operand applies to each component operand:

l The rules for each register in a vector operand follow the same rules as registers in non-vector
operands. Therefore, they must all be the same register type. In a vector operand used as a
destination, it is not valid to repeat a register.

l The rules for each constant in a vector operand follow the same rules as constants in non-vector
operands. See 4.8.5. How Text Format Constants Are Converted to Bit String Constants (page 92).

In BRIG, the type of the vector operand is the type of each component operand. See 4.16. Operands (page
104).

Loads and stores with vector operands can be used to implement loading and storing of contiguous multiple
bytes of memory, which can improve memory performance.

Examples:

group_u32 %x;
readonly_s32 %tbl[256];
ld_group_u16 $s0, [%x]; // via offset
ld_group_u32 $s0, [%x];
ld_group_f32 $s2, [%x][0]; // treat result as floating-point
ld_v4_readonly_f32 ($s0, $s3, $s1, $s2), [%tbl];
ld_readonly_s32 $s1, [%tbl][12];
ld_v4_readonly_width(all)_f32 ($s0, $s3, $s9, $s1), [%tbl][2]; // broadcast form
ld_v2_f32 ($s9, $s2), [$s1+8];
st_v2_f32 ($s9, 1.0f), [$s1+16];
st_v4_u32 ($s9, 2, 0xfffffffff, WAVESIZE), [$s1+32];
combine_v4_b128_b32 $q0, (3.14f, _f16x2(0.0h, 1.0h), -1, WAVESIZE);

See 6.3. Load (ld) Instruction (page 173).

4.18 Address Expressions
Most variables have two addresses:

l Flat address

l Segment address

106 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 107

A flat address is a general address that can be used to address any HSAIL memory. Flat addresses are in
bytes.

A segment address is an offset within the segment in bytes.

An instruction that uses an address expression operand specifies if it is a flat or segment address by the
segment modifier on the instruction. If the segment modifier is omitted, the operand is a flat address,
otherwise it is a segment address for the segment specified by the modifier.

Address expressions consist of one of the following:

l A variable name in square brackets

l An address in square brackets

l A variable name in square brackets followed by an address in square brackets

An address is one of the following:

l register

l integer constant

l + integer constant

l - integer constant

l register + integer constant

l register - integer constant

If a variable name is specified, the variable must be declared or defined with the same segment as the
address expression operand. Therefore, a flat address expression operand cannot use a variable name as
variables are always declared or defined in a specific segment. For information about how to declare a
variable, see 4.3.8. Variable (page 64).

Addresses are always in bytes. For information about how addresses are formed from an address
expression, see 6.1.1. How Addresses Are Formed (page 166).

Some examples of addresses are:

global_f32 %g1[10]; // allocate an array in a global segment
group_f32 %x[10]; // allocate an array in a group segment
ld_global_f32 $s2, [%g1][2]; // global segment address
ld_global_f32 $s1, [%g1][0]; // the [0] is optional
ld_global_f32 $s2, [%g1][+4];
lda_global_u64 $d0, [%g1][-4];
ld_global_u32 $s3, [%g1][$s2]; // read the float bits as an unsigned integer
ld_global_u32 $s4, [%g1][$s2+4];
ld_global_u32 $s5, [100]; // read from absolute global segment address 100
ld_group_f32 $s3, [%x][$s2]; // group segment-relative address
ld_group_f16 $s5, [100]; // read 16 bits at absolute global segment address 100

See 6.3. Load (ld) Instruction (page 173).

4.19 Floating Point
HSAIL provides a rich set of floating-point instructions. Most follow the IEEE/ANSI Standard 754-2008 for
floating-point operations. However, there are important differences:

Chapter 4. HSAILSyntax andSemantics 4.19 FloatingPoint

Chapter 4. HSAILSyntax andSemantics 4.19 FloatingPoint

l If the Base profile (see 16.2.1. Base Profile Requirements (page 289)) has been specified:

o The 64-bit floating-point type (f64) is not supported (see 16.2.1. Base Profile Requirements
(page 289)).

o The DETECT and BREAK exception policies are not supported for the five floating point
exceptions specified in 12.2. Hardware Exceptions (page 269), therefore instructions do not
have to generate them as they have no observable effect (see 4.19.5. Floating Point
Exceptions (page 112)).

l Floating-point values are stored in IEEE/ANSI Standard 754-2008 binary interchange format
encoding. See 4.19.1. Floating-Point Numbers (facing page).

l For operations that follow the IEEE/ANSI Standard 754-2008, the exceptions generated are those
corresponding to the set of IEEE/ANSI Standard 754-2008 status flags raised by IEEE/ANSI Standard
754-2008 default exception handling. See 12.2. Hardware Exceptions (page 269).

o When exceptions are generated the result is that produced by IEEE/ANSI Standard 754-2008
default exception handling.

o IEEE/ANSI Standard 754-2008 flags are supported using the DETECT exception policy and
related operations. See 11.2. Exception Instructions (page 260).

l Four IEEE/ANSI Standard 754-2008 rounding modes are supported for some floating-point
instructions. See 4.19.2. Floating-Point Rounding (facing page).

l The ftz (flush to zero) modifier, which forces subnormal values to zero, is supported on most
instructions. See 4.19.3. Flush to Zero (ftz) (page 110).

l Instructions that produce NaN results have certain requirements. See 4.19.4. Not A Number (NaN)
(page 111).

l Some instructions are fast approximations (the nsqrt instruction is an example). See 5.14. Native
Floating-Point Instructions (page 148).

l Many instructions that are not in the IEEE/ANSI Standard 754-2008 are provided.

l HSAIL supports saturating forms of floating-point to integer conversions. See 5.19.4. Description of
Integer Rounding Modes (page 162).

l HSAIL supports packed versions of some floating-point instructions.

o The value for each element of the packed result is the same as would be produced by the
non-packed version of the instruction, including handling of the ftz, rounding modifiers, and
exceptions.

o The exceptions generated by the packed instruction is the union of the exceptions generated
for each element of the packed result.

l Some operations have a precision defined in terms of ULP rather than in terms of the correctly
rounded result specified by IEEE/ANSI Standard 754-2008. See 4.19.6. Unit of Least Precision (ULP)
(page 112).

108 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 109

4.19.1 Floating-Point Numbers

Floating-point data is stored in IEEE/ANSI Standard 754-2008 binary interchange format encoding:

l An f16 number is stored in memory and in an s register as 1 bit of sign, 5 bits of exponent, and 10
bits of mantissa. The exponent is biased with an excess value of 15. The representation of an f16
value stored in an s register occupies the least significant 16 bits of the register, and the most
significant 16 bits are undefined.

l An f32 number is stored in memory and in an s register as 1 bit of sign, 8 bits of exponent, and 23
bits of mantissa. The exponent is biased with an excess value of 127.

l An f64 number is stored in memory and in a d register as 1 bit of sign, 11 bits of exponent, and 52
bits of mantissa. The exponent is biased with an excess value of 1023.

In all cases, if the exponent is all 1's and the mantissa is not 0, the number is a NaN.

If the exponent is all 1's and the mantissa is 0, then the value is either Infinity (sign == 0) or -Infinity (sign ==
1).

There are two representations for 0: positive zero has all bits 0; negative zero has a 1 in the sign bit and all
other bits 0.

The first bit of the mantissa is used to distinguish between signaling NaNs (first bit 0) and quiet NaNs (first
bit 1).

Signaling NaNs are never the result of arithmetic instructions.

The remaining bits of the mantissa of a NaN can be used to carry a payload (information about what caused
the NaN).

The sign of a NaN has no meaning, but it can be predictable in some circumstances.

HSAIL programs can use hex formats to indicate the exact bit pattern to be used for a floating-point
constant.

4.19.2 Floating-Point Rounding

Four IEEE/ANSI Standard 754-2008 floating-point rounding modes are supported for some floating-point
instructions:

l up specifies that result of the instruction should be rounded to positive infinity.

l down specifies that the result of the instruction should be rounded to negative infinity.

l zero specifies that result of the instruction should be rounded to zero.

l near specifies that result of the instruction should be rounded to the nearest representable number
and that ties should be broken by selecting the value with an even least significant bit.

If the round modifier is omitted, and the instruction supports a floating-point rounding mode, the default
floating-point rounding mode specified by the module header is used. If the Base profile has been specified,
the round modifier is not supported, and must always be omitted or it is an error. See Chapter 14. module
Header (page 284) and 16.2.1. Base Profile Requirements (page 289).

Chapter 4. HSAILSyntax andSemantics 4.19 FloatingPoint

Chapter 4. HSAILSyntax andSemantics 4.19 FloatingPoint

Floating-point operations that support the rounding modifier first compute the infinitely precise result, and
then round it to the destination floating-point type. Rounding is performed according to the IEEE/ANSI
Standard 754-2008 including the generation of overflow, underflow and inexact exceptions (see 12.2.
Hardware Exceptions (page 269)):

l As specified by IEEE/ANSI Standard 754-2008 Section 7.5, it is implementation defined if tininess (a
tiny non-zero result) is detected before or after rounding, but an implementation must use the same
method for all instructions.

l If the result is a NaN then the destination is set to a quiet NaN. See 4.19.4. Not A Number (NaN)
(facing page).

l Else if the result is infinity then the destination is set to an infinity with the same sign. No exceptions
are generated.

l Else if the result is outside the range of representable numbers then the overflow and inexact
exceptions are generated. The destination is set to either an appropriately signed infinity or
appropriately signed largest representable number according to the rounding mode. near always
rounds to infinity.

l Else if tininess is detected and ftz is specified, then the destination is set to 0.0 and the underflow
exception generated. It is implementation defined if the inexact exception is also generated. See
4.19.3. Flush to Zero (ftz) (below).

l Else the destination is set to the rounded result. In addition:

o If the rounded result does not exactly equal the value before rounding then the inexact
exception is generated.

o If the rounded result does not exactly equal the value before rounding and tininess was
detected then the underflow exception is generated.

4.19.3 Flush to Zero (ftz)

HSAIL supports the flush to zero ftz modifier on many floating-point instructions that controls the flushing
of source subnormal values and tiny results to zero.

If an instruction supports the ftz modifier then:

l If the Base profile has been specified then the ftz modifier must be specified. See 16.2.1. Base
Profile Requirements (page 289).

l Otherwise, the ftz modifier is optional.

If ftz is specified on an instruction that has floating-point source operands:

l For each floating-point source operand that has a subnormal value, the instruction is performed
using the value 0.0 instead.

l The result of the instruction and any exceptions generated by the instruction and any subsequent
rounding are based on the flushed source values.

110 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 111

If ftz is specified on an instruction that has a floating-point destination operand:

l The instruction result before rounding is computed as defined by the IEEE/ANSI Standard 754-2008.

l If tininess is detected (see 4.19.2. Floating-Point Rounding (page 109)), then the destination operand
must be set to 0.0 and the underflow exception generated. It is implementation defined if the inexact
exception is also generated. These exceptions are in addition to any other exception generated by
the instruction.

l Otherwise, the result is rounded according to the rounding modifier and stored in the destination
operand. See 4.19.2. Floating-Point Rounding (page 109).

4.19.4 Not A Number (NaN)

As required by IEEE/ANSI Standard 754-2008, for all floating-point instructions, except the floating-point bit
instructions (see 5.13. Floating-Point Bit Instructions (page 146)) and native floating-point instructions (see
5.14. Native Floating-Point Instructions (page 148)):

l If one or more of the floating-point source operands is a signaling NaN, an invalid operation
exception must be generated. Additionally, if the instruction is a signaling comparison form (see
5.18. Compare (cmp) Instruction (page 155)) and one or more of the source operands is a quiet NaN,
then an invalid operation exception must be generated. See 12.2. Hardware Exceptions (page 269).

l If an instruction has a floating-point destination operand and produces a NaN, it must produce a
quiet NaN.

l If one or more of the floating-point source operands are NaNs, and the instruction has a floating-
point destination operand, then the result must be a quiet NaN.

o The exception to this rule is min and max when one of the inputs is a quiet NaN and the other
is a number, in which case the result is the number.

In addition HSAIL requires that when a NaN is produced by these instructions, it must be one of the
following:

l If the Base profile has been specified, it is implementation defined what value quiet NaN is returned.
It is not required to be bit-identical, after converting a signaling NaN to a quiet NaN, to one of the
NaN inputs. See 16.2.1. Base Profile Requirements (page 289).

l If the Full profile has been specified then NaN source operands must be propagated as IEEE/ANSI
Standard 754-2008 Section 6.2.3 defines should happen:

o The quiet NaN produced must be bit-identical to one of the NaN inputs, after converting
signaling NaNs to quiet NaNs, except that the sign bits may differ. If multiple inputs are a
NaN, it is implementation defined which NaN will be used. See 16.2.2. Full Profile
Requirements (page 290).

o The cvt instruction is an exception to this rule when both the source and the destination are
floating-point types. In this case the source and destination operands are different sizes, and
it is implementation defined what quiet NaN is returned. However, if a NaN is converted from
a larger floating-point type to a small one and then back to the original larger floating-point
type, then the final quiet NaN produced must be bit-identical to the original NaN, after
converting signaling NaNs to quiet NaNs, except that the sign bits may differ.

Chapter 4. HSAILSyntax andSemantics 4.19 FloatingPoint

Chapter 4. HSAILSyntax andSemantics 4.20 Dynamic GroupMemory Allocation

The image instructions are an exception these rules, both when converting component values (see 7.1.4.2.
Channel Type (page 200)), and when using a sampler with normalized coordinates (see 7.1.6.1. Coordinate
Normalization Mode (page 206)) or a linear filter (see 7.1.6.3. Filter Mode (page 209)). They must not
generate an invalid operation exception for signaling NaNs. For both profiles it is implementation defined if
NaN values are propagated or signaling NaNs are converted to quiet NaNs.

4.19.5 Floating Point Exceptions

HSAIL defines the five floating-point exceptions specified in IEEE/ANSI Standard 754-2008 (see 12.2.
Hardware Exceptions (page 269)). It also provides a mechanism to control these exceptions by means of the
DETECT and BREAK exception policies (see 12.3. Hardware Exception Policies (page 271)). The exception
policies are specified when a kernel is finalized and cannot be changed at runtime (see 13.4. Control
Directives for Low-Level Performance Tuning (page 278)). Whether either exeption policy is supported by a
kernel agent depends on the kernel agent and the profile specified (see 16.2. Profile-Specific Requirements
(page 289)).

An implementation can choose to not generate hardware exceptions that correspond to HSAIL exceptions
that are not enabled for the DETECT or BREAK exception policy since their effect is not observable in HSAIL.

4.19.6 Unit of Least Precision (ULP)

Some operations have a precision defined in terms of ULP rather than in terms of the correctly rounded
result specified by IEEE/ANSI Standard 754-2008. In addition, the precision of some operations varies
according to the profile specified. See 16.2. Profile-Specific Requirements (page 289).

The definition of Units of least precision (ULP) is the same as in The OpenCL Specification Version 2.0, which is
based on Jean-Michel Muller’s definition in On the definition of ulp(x).

ulp(x) is defined as follows:

If x is a real number that lies between two finite consecutive floating-point numbers a and b,
without being equal to one of them, then ulp(x) = |b − a|, otherwise ulp(x) is the distance
between the two non-equal finite floating-point numbers nearest x. Moreover, ulp(NaN) is
NaN.

The maximum relative error of an operation can be expressed in terms of ULP. An operation is less than or
equal to n ULP of the mathematically accurate result if, for all possible numeric source values of the
operation:

|expected − actual| / ulp(expected) ≤ n

where expected is the mathematically accurate result and actual is the result returned by the operation.

4.20 Dynamic Group Memory Allocation
Some developers like to write code using dynamically sized group memory. For example, in the following
code there are four arrays allocated to group memory, two of known size and two of unknown size:

kernel &k1(kernarg_u32 %dynamic_size, kernarg_u32 %more_dynamic_size)
{

group_u32 %known[2];
group_u32 %more_known[4];
group_u32 %dynamic[%dynamic_size]; // illegal: %dynamic_size not a constant value
group_u32 %more_dynamic[%more_dynamic_size];

// illegal: %more_dynamic_size not a constant value
st_group_f32 1.0f, [%dynamic][8];
st_group_f32 2.0f, [%more_dynamic];

112 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 113

// ...
}

Internally, group memory might be organized as:

start of group memory
offset 0, known
offset 8, more_known
offset 24, dynamic
offset ?, more_dynamic

end of group memory ?

The question marks indicate information that is not available at finalization time.

HSAIL does not support this sort of dynamically sized array because of two problems:

l The finalizer cannot efficiently emit code that addresses the array more_dynamic.

l The dispatch cannot launch the kernel because it does not know the amount of group space required
for a work-group.

In order to provide equivalent functionality, dynamic allocation of group memory uses these steps:

1. The application declares the HSAIL kernel with additional arguments, which are group segment
offsets for the dynamically sized group memory. The kernel adds these offsets to the group segment
base address returned by groupbaseptr, and uses the result to access the dynamically sized
group memory.

2. The finalizer calculates the amount of group segment memory used by the kernel and the functions
it calls directly or indirectly, and reports the size when the kernel is finalized.

3. The application computes the size and alignment of each of the dynamically allocated group
segment variables that correspond to each of the additional kernel arguments. It uses this
information to compute the group segment offset for each of the additional kernel arguments by
starting at the group segment size reported by the finalizer for the kernel. The offsets must be
rounded up to meet any alignment requirements.

4. The application dispatches the kernel using the group segment offsets it computed, and specifies the
amount of group memory as the sum of the amount reported by the finalizer plus the amount
required for the dynamic group memory.

Using this mechanism, the previous example would be coded as follows:

kernel &k1(kernarg_u32 %dynamic_offset, kernarg_u32 %more_dynamic_offset)
{

group_u32 %known[2];
group_u32 %more_known[4];
groupbaseptr_u32 $s0;
ld_kernarg_u32 $s1, [%dynamic_offset];
add_u32 $s1, $s0, $s1;
ld_kernarg_u32 $s2, [%more_dynamic_offset];
add_u32 $s2, $s0, $s2;
st_group_f32 1.0f, [$s1 + 8];
st_group_f32 2.0f, [$s2];
//...

};

Chapter 4. HSAILSyntax andSemantics 4.20 Dynamic GroupMemory Allocation

Chapter 4. HSAILSyntax andSemantics 4.21 Kernarg Segment

4.21 Kernarg Segment
The kernarg segment is used to hold kernel formal arguments as kernarg segment variables. Kernarg
segment variables:

l Are always constant, because all work-items get the same values.

l Are read-only.

l Can only be declared in the list of kernel formal arguments.

l Cannot have initializers, because they get their values from the kernel's dispatch packet.

The memory layout of variables in the kernarg segment is required to be in the same order as the list of
kernel formal arguments, starting at offset 0 from the kernel's kernarg segment base address, with no
padding between variables except to honor the requirements of natural alignment and any align qualifier.
For information about the align qualifier, see 4.3.10. Declaration and Definition Qualifiers (page 69).

The base address of the kernarg segment variables for the currently executing kernel dispatch can be
obtained by the kernargbaseptr instruction. The size of the kernel's kernarg segment variables is the
size required for the kernarg segment variables and padding, rounded up to be a multiple of 16. The
alignment of the base address of the kernel's kernarg segment variables is the larger of 16 bytes and the
maximum alignment of the kernel's kernarg segment variables.

HSA requires that the agent dispatching the kernel and the kernel agent executing the dispatch have the
same endian format.

When a kernel is dispatched, the dispatch packet that is added to the User Mode Queue must point to global
segment memory that provides the values for the dispatch's kernarg segment. The global segment memory
is required to be allocated using the runtime kernarg memory allocator specifying the kernel agent with
which the User Mode Queue is associated. It is allowed for a single allocation to be used for multiple
dispatch packets on the same kernel agent, either by subdividing it, or reusing it, provided the following
restrictions are observed for the global segment memory pointed at by each dispatch packet:

l The memory must have the kernel's kernarg segment size and alignment.

l The memory must be initialized with the values of the kernel's formal arguments using the same
memory layout as the kernel's kernarg segment, starting from offset 0.

l It must be ensured that the memory's initialized values are visible to a thread that performs a load
acquire at system scope on the dispatch packet format field and it gets the DISPATCH value. For
example, this could be achieved using a store release at system scope on the format field by the
same thread that previously did the initialization.

l The memory must not be modified once the dispatch packet is enqueued until the dispatch has
completed execution.

Therefore, the layout, size and alignment of the global segment memory used to pass values to the kernarg
segment of a kernel can be statically determined, in a device independent manner, by examining the
kernel's signature. An implementation is not permitted to require this memory to be any larger, or have
greater alignment: for example, to hold additional implementation-specific data used during the execution
of the kernel.

For example, the first kernel argument is stored at the base address, the second is stored at the base
address + sizeof(first kernarg) aligned based on the type and optional align qualifier of the second
argument, and so forth. Arrays are passed by value (see 4.3.8. Variable (page 64)).

114 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 115

It is implementation defined if the machine instructions generated to access the kernel's kernarg segment
directly access this global segment memory, or if the values are used to initialize some other
implementation-specific memory within the kernel agent.

In the following code, the load (ld) instruction reads the contents of the address z into the register $s1:

kernel &top(kernarg_u32 %z)
{
ld_kernarg_u32 $s1, [%z]; // read z into $s1
//...

};

It is possible to obtain the address of z with an lda instruction:

lda_kernarg_u64 $d2, [%z]; // get the 64-bit pointer to z (a kernarg segment address)

Such addresses must not be used in store instructions.

For more information, see 6.3. Load (ld) Instruction (page 173) and 5.8. Copy (Move) Instructions (page 130).

Chapter 4. HSAILSyntax andSemantics 4.21 Kernarg Segment

Chapter 5. Arithmetic Instructions 5.1 Overviewof Arithmetic Instructions

CHAPTER 5.
Arithmetic Instructions

This chapter describes the HSAIL arithmetic instructions.

5.1 Overview of Arithmetic Instructions
Unless stated otherwise, arithmetic instructions expect all inputs to be in registers or immediate values and
to produce a single result in a register (see 4.16. Operands (page 104)).

Consider this instruction:

max_s32 $s1, $s2, $s3;

In this case, the max instruction is followed by a base type s and a length 32.

Next there is a destination operand s1.

Finally, there are zero or more source operands, in this case s2 and s3.

The type expands on the instruction. For example, a max instruction could be signed integer, unsigned
integer, or floating-point.

The length determines the size of the register used. In the descriptions of the instructions in this manual, a
size n instruction expects all input registers to be of length n bits. For more information on the rules
concerning operands, see 4.16. Operands (page 104).

5.2 Integer Arithmetic Instructions
Integer arithmetic instructions treat the data as signed (two's complement) or unsigned data types of 32-bit
or 64-bit lengths.

HSAIL supports packed versions of some integer arithmetic instructions.

Integer arithmetic instructions treat the data as signed (two's complement) or unsigned data types of 32-bit
or 64-bit lengths.

HSAIL supports packed versions of some integer arithmetic instructions.

5.2.1 Syntax

116 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 117

Table 5–1 Syntax for Integer Arithmetic Instructions

Opcodes and Modifiers Operands
abs_sLength dest, src0

add_TypeLength dest, src0, src1

borrow_TypeLength dest, src0, src1

carry_TypeLength dest, src0, src1

div_TypeLength dest, src0, src1

max_TypeLength dest, src0, src1

min_TypeLength dest, src0, src1

mul_TypeLength dest, src0, src1

mulhi_TypeLength dest, src0, src1

neg_sLength dest, src0

rem_TypeLength dest, src0, src1

sub_TypeLength dest, src0, src1

Explanation of Modifiers (see Table 4–2 (page 99))

Type: s, u.

Length: 32, 64.

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src0, src1: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

The only exceptions allowed are for div and rem, which are permitted to generate a divide by zero exception or an
implementation defined exception for a 0 divisor.

Table 5–2 Syntax for Packed Versions of Integer Arithmetic Instructions

Opcodes and Modifiers Operand
abs_Control_sLength dest, src0

add_Control_TypeLength dest, src0, src1

max_Control_TypeLength dest, src0, src1

min_Control_TypeLength dest, src0, src1

mul_Control_TypeLength dest, src0, src1

mulhi_Control_TypeLength dest, src0, src1

neg_Control_sLength dest, src0

sub_Control_TypeLength dest, src0, src1

Explanation of Modifiers (see 4.14. Packing Controls for Packed Data (page 101))

Control for abs and neg: p or s.
Control for add, mul, and sub: pp, pp_sat, ps, ps_sat, sp, sp_sat, ss, or ss_sat.
Control for max, min, and mulhi: pp, ps, sp, or ss.

Type: s, u.

Length: 8x4, 8x8, 8x16, 16x2, 16x4, 16x8, 32x2, 32x4, or 64x2.
See 4.13.2. Packed Data Types (page 100).

Chapter 5. Arithmetic Instructions 5.2 Integer Arithmetic Instructions

Chapter 5. Arithmetic Instructions 5.2 Integer Arithmetic Instructions

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src0, src1: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.1. BRIG Syntax for Integer Arithmetic Instructions (page 348).

5.2.2 Description

abs

The abs instruction computes the absolute value of the source src0 and stores the result into the
destination dest. There are no unsigned versions of abs, so only abs_sLength is valid.

abs(−231) returns −231 for 32-bit operands. abs(−263) returns −263 for 64-bit operands.

add

The add instruction computes the sum of the two sources src0 and src1 and stores the result into
the destination dest. The add instruction supports both signed and unsigned forms to aid readers of
the code, though both forms compute the same result.

borrow

The borrow instruction subtracts source src1 from source src0. If the subtraction requires a borrow
into the most significant (leftmost) bit, it sets the destination dest to 1; otherwise it sets the dest to 0.

The borrow instruction supports both signed and unsigned forms to aid readers of the code, though
both forms compute the same result.

carry

The carry instruction adds the two sources src0 and src1. If the addition causes a carry out of the
most significant (leftmost) bit, it sets the destination dest to 1; otherwise it sets the dest to 0.

The carry instruction supports both signed and unsigned forms to aid readers of the code, though
both forms compute the same result.

div

The div instruction divides source src0 by source src1 and stores the quotient in destination dest.

The div instruction follows the c99 model for signed division: the result has the same sign as the
dividend, and divide always truncates toward zero (-22/7 produces -3). The result of integer divide with
a divisor of zero is undefined, and it is implementation defined whether: no exception is generated; a
divide by zero exception is generated; or some other implementation defined exception is generated.

The result of dividing -231 for s32 types, or -263 for s64 types, by -1 is undefined, and it is
implementation defined whether: no exception is generated; or an implementation defined exception is
generated.

118 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 119

rem

The rem instruction divides source src0 by source src1 and stores the remainder in destination
dest.

The rem instruction follows the c99 model for signed remainder: the remainder has the same sign as
the dividend, and divide always truncates toward zero (-22/7 produces -1). The result of integer
remainder with a divisor of zero is undefined, and it is implementation defined whether: no exception is
generated; a divide by zero exception is generated; or some other implementation defined exception is
generated.

rem(−231, -1) returns 0 for s32 types. rem(−263, -1) returns 0 for s64 types.

max

The max instruction computes the maximum of source src0 and source src1 and stores the result
into the destination dest.

min

The min instruction computes the minimum of source src0 and source src1 and stores the result
into the destination dest.

mul

The mul instruction produces the lower bits of the product. mul supports both signed and unsigned
forms to aid readers of the code, though both forms compute the same result.

mul(−231, -1) returns -231 for 32-bit operands. mul(−263, -1) returns -263 for 64-bit operands.

mulhi

mulhi_s32 produces the upper bits of the 64-bit signed product; mulhi_u32 produces the upper bits
of the 64-bit unsigned product.

mulhi_s64 produces the upper bits of the 128-bit signed product; mulhi_u64 produces the upper
bits of the 128-bit unsigned product.

For example: In the operation -1 x 1, the upper 32 bits of the signed integer product are all 1's while the
upper 32 bits of the unsigned product are all 0's.

Similarly, for packed operands M x N, the top M bits of each of the N signed or unsigned products is
placed in the packed M x N result.

To generate a 128-bit product from 64-bit sources, compilers can generate both 64-bit half results
using mul_u64/mul_s64 and mulhi_u64/mulhi_s64 and then combine the partial results using
a combine instruction. See 5.8. Copy (Move) Instructions (page 130).

neg

The neg instruction computes 0 minus source src0 and stores the result into the destination dest.
There are no unsigned versions of neg, so only neg_sLength is valid.

neg(−231) returns −231 for 32-bit operands. neg(−263) returns −263 for 64-bit operands.

Chapter 5. Arithmetic Instructions 5.2 Integer Arithmetic Instructions

Chapter 5. Arithmetic Instructions 5.2 Integer Arithmetic Instructions

sub

The sub instruction subtracts source src1 from source src0 and places the result in the destination
dest.

The sub instruction supports both signed and unsigned forms to aid readers of the code, though both
forms compute the same result.

Examples of Regular (Nonpacked) Instructions
abs_s32 $s1, $s2;
abs_s64 $d1, $d2;

add_s32 $s1, 42, $s2;
add_u32 $s1, $s2, 0x23;
add_s64 $d1, $d2, 23;
add_u64 $d1, 61, 0x233412349456;

borrow_s64 $d1, $d2, 23;

carry_s64 $d1, $d2, 23;

div_s32 $s1, 100, 10;
div_u32 $s1, $s2, 0x23;
div_s64 $d1, $d2, 23;
div_u64 $d1, $d3, 0x233412349456;

max_s32 $s1, 100, 10;
max_u32 $s1, $s2, 0x23;
max_s64 $d1, $d2, 23;
max_u64 $d1, $d3, 0x233412349456;

min_s32 $s1, 100, 10;
min_u32 $s1, $s2, 0x23;
min_s64 $d1, $d2, 23;
min_u64 $d1, $d3, 0x233412349456;

mul_s32 $s1, 100, 10;
mul_u32 $s1, $s2, 0x23;
mul_s64 $d1, $d2, 23;
mul_u64 $d1, $d3, 0x233412349456;

mulhi_s32 $s1, $s3, $s3;
mulhi_u32 $s1, $s2, $s9;

neg_s32 $s1, 100;
neg_s64 $d1, $d2;

rem_s32 $s1, 100, 10;
rem_u32 $s1, $s2, 0x23;
rem_s64 $d1, $d2, 23;
rem_u64 $d1, $d3, 0x233412349456;

sub_s32 $s1, 100, 10;
sub_u32 $s1, $s2, 0x23;
sub_s64 $d1, $d2, 23;
sub_u64 $d1, $d3, 0x233412349456;

Examples of Packed Instructions
abs_p_s8x4 $s1, $s2;
abs_p_s32x2 $d1, $d1;

120 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 121

add_pp_sat_u16x2 $s1, $s0, $s3;
add_pp_sat_u16x4 $d1, $d0, $d3;

max_pp_u8x4 $s1, $s0, $s3;

min_pp_u8x4 $s1, $s0, $s3;

mul_pp_u16x4 $d1, $d0, $d3;

mulhi_pp_u8x8 $d1, $d3, $d4;

neg_s_s8x4 $s1, $s2;
neg_s_s8x4 $s1, $s2;

sub_sp_u8x8 $d1, $d0, $d3;

5.3 Integer Optimization Instruction
Integer optimizations are intended to improve performance. High-level compilers should attempt to
generate these whenever possible.

See also 5.4. 24-Bit Integer Optimization Instructions (next page).

5.3.1 Syntax

Table 5–3 Syntax for Integer Optimization Instruction

Opcode and Modifiers Operands
mad_TypeLength dest, src0, src1, src2

Explanation of Modifiers (see Table 4–2 (page 99))

Type: s, u.

Length: 32, 64.

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src0, src1, src2: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.2. BRIG Syntax for Integer Optimization Instruction (page 349).

Description

The integer mad (multiply add) instruction multiplies source src0 times source src1 and then adds source
src2. The least significant bits of the result are then stored in the destination dest.

Integer mad supports both signed and unsigned forms to aid readers of the code, though both forms
compute the same result.

The math is: ((s0 * s1) + s2) & ((1 << length) - 1).

Examples

Chapter 5. Arithmetic Instructions 5.3 Integer Optimization Instruction

Chapter 5. Arithmetic Instructions 5.4 24-Bit Integer Optimization Instructions

mad_s32 $s1, $s2, $s3, $s5;
mad_s64 $d1, $d2, $d3, $d2;
mad_u32 $s1, $s2, $s3, $s3;
mad_u64 $d1, $d2, $d3, $d1;

5.4 24-Bit Integer Optimization Instructions
Integer optimizations are intended to improve performance. High-level compilers should attempt to
generate these whenever possible. These instructions operate on 24-bit integer data held in 32-bit
registers.

For s types, the 24 least significant bits of the source values are treated as a two's complement signed
value. The result is computed as a 48-bit two's complement value, and is undefined if the two's complement
32-bit source values are outside the range of -223..223-1. This allows an implementation to use equivalent
32-bit signed instructions if it does not support native 24-bit signed instructions.

For u types, the 24 least significant bits of the source values are treated as an unsigned value. The result is
computed as a 48-bit unsigned value, and is undefined if the unsigned 32-bit source values are outside the
range of 0..224-1. This allows an implementation to use equivalent 32-bit unsigned instructions if it does not
support native 24-bit unsigned instructions.

See also 5.3. Integer Optimization Instruction (previous page).

5.4.1 Syntax

Table 5–4 Syntax for 24-Bit Integer Optimization Instructions

Opcode and Modifiers Operands
mad24_TypeLength dest, src0, src1, src2

mad24hi_TypeLength dest, src0, src1, src2

mul24_TypeLength dest, src0, src1

mul24hi_TypeLength dest, src0, src1

Explanation of Modifiers (see Table 4–2 (page 99))

Type: s, u

Length: 32

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src0, src1, src2: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.3. BRIG Syntax for 24-Bit Integer Optimization Instructions (page 349).

Description

mad24

Computes the 48-bit product of the two 24-bit integer sources src0 and src1. It then adds the 32 bits
of src2 to the result and stores the least significant 32 bits of the result in the destination.

122 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 123

mad24hi

Computes mul24hi(src0, src1) + src2 and stores the least significant 32 bits of the result in
the destination.

mul24

Computes the 48-bit product of the two 24-bit integer sources src0 and src1 and stores the least
significant 32 bits of the result in the destination.

mul24hi

Uses the same computation as mul24, but stores the most significant 16 bits of the 48-bit product in
the destination. s32 sign-extends the result and u32 zero-extends the result.

Examples
mad24_s32 $s1, $s2, -12, 23;
mad24_u32 $s1, $s2, 12, 2;

mad24hi_s32 $s1, $s2, -12, 23;
mad24hi_u32 $s1, $s2, 12, 2;

mul24_s32 $s1, $s2, -12;
mul24_u32 $s1, $s2, 12;

mul24hi_s32 $s1, $s2, -12;
mul24hi_u32 $s1, $s2, 12;

5.5 Integer Shift Instructions
These instructions perform right or left shifts of bits.

These instructions have a packed form.

5.5.1 Syntax

Table 5–5 Syntax for Integer Shift Instructions

Opcode and Modifiers Operands
shl_TypeLength dest, src0, src1
shr_TypeLength dest, src0, src1

Explanation of Modifiers (see Table 4–2 (page 99))

Type: s, u.

Length: For regular form: 32, 64; for packed form: 8x4, 8x8, 8x16, 16x2, 16x4, 16x8, 32x2, 32x4, or 64x2.

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src0, src1: Sources. Can be a register or immediate value. Regardless of TypeLength, src1 is always u32.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.4. BRIG Syntax for Integer Shift Instructions (page 349).

Chapter 5. Arithmetic Instructions 5.5 Integer Shift Instructions

Chapter 5. Arithmetic Instructions 5.5 Integer Shift Instructions

5.5.2 Description for Standard Form

If the Length is 32, then the amount to shift ignores all but the lower five bits of src1. For example, shifts
of 33 and 1 are treated identically.

If the Length is 64, then the amount to shift ignores all but the lower six bits of src1.

shl

Shifts source src0 left by the least significant bits of source src1 and stores the result into the
destination dest. This is the left arithmetic shift, adding zeros to the least significant bits. The value in
src1 is treated as unsigned.

The shl instruction supports both signed and unsigned forms to aid readers of the code, though both
forms compute the same result.

shr_s

Shifts source src0 right by the least significant bits of source src1 and stores the result into the
destination dest. This is the right arithmetic shift, filling the exposed positions (the most significant
bits) with the sign of src0. The value in src1 is treated as unsigned.

shr_u

Shifts source src0 right by the least significant bits of source src1 and stores the result into the
destination dest. This is the right logical shift, filling the exposed positions (the most significant bits)
with zeros. The value in src1 is treated as unsigned.

Both shr_s and shr_u produce the same result if src0 is non-negative or if the least significant bits of
the shift amount (src1) is zero.

5.5.3 Description for Packed Form

Each element in src0 is shifted by the same amount. The amount is in src1.

If the element size is 8 (that is, the Length starts with 8x), the shift amount is specified in the least
significant 3 bits of src1.

If the element size is 16 (that is, the Length starts with 16x), the shift amount is specified in the least
significant 4 bits of src1.

If the element size is 32 (that is, the Length starts with 32x), the shift amount is specified in the least
significant 5 bits of src1.

If the element size is 64 (that is, the Length starts with 64x), the shift amount is specified in the least
significant 6 bits of src1.

Examples
shl_u32 $s1, $s2, 2;
shl_u64 $d1, $d2, 2;
shl_s32 $s1, $s2, 2;
shl_s64 $d1, $d2, 2;

shr_u32 $s1, $s2, 2;
shr_u64 $d1, $d2, 2;
shr_s32 $s1, $s2, 2;
shr_s64 $d1, $d2, 2;

124 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 125

shl_u8x8 $d0, $d1, 2;
shl_u8x4 $s1, $s2, 2;
shl_u8x8 $d1, $d2, 1;
shr_u8x4 $s1, $s2, 1;
shr_u8x8 $d1, $d2, 2;

5.6 Individual Bit Instructions
It is often useful to consider a 32-bit or 64-bit register as 32 or 64 individual bits and to perform instructions
simultaneously on each of the bits of two sources.

5.6.1 Syntax

Table 5–6 Syntax for Individual Bit Instructions

Opcode and Modifiers Operands
and_TypeLength dest, src0, src1

or_TypeLength dest, src0, src1

xor_TypeLength dest, src0, src1

not_TypeLength dest, src0

popcount_u32_TypeLength dest, src0

Explanation of Modifiers (see Table 4–2 (page 99))

Type: b

Length: 1, 32, 64; popcount does not support b1.

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src0, src1: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.5. BRIG Syntax for Individual Bit Instructions (page 349).

Description

The b1 form is used with control (c) register sources. It can only be used with the instructions and, or, xor,
and not.

and

Performs the bitwise AND operation on the two sources src0 and src1 and places the result in the
destination dest. The and instruction can be applied to 1-, 32-, and 64-bit values.

or

Performs the bitwise OR operation on the two sources src0 and src1 and places the result in the
destination dest. The or instruction can be applied to 1-, 32-, and 64-bit values.

xor
Performs the bitwise XOR operation on the two sources src0 and src1 and places the result in the
destination dest. The xor instruction can be applied to 1-, 32-, and 64-bit values.

Chapter 5. Arithmetic Instructions 5.6 IndividualBit Instructions

Chapter 5. Arithmetic Instructions 5.6 IndividualBit Instructions

not

Performs the bitwise NOT operation on the source src0 and places the result in the destination dest.
The not operation can be applied to 1-, 32-, and 64-bit values.

popcount

Counts the number of 1 bits in src0. Only b32 and b64 inputs are supported. The Type and Length
fields specify the type and size of src0. dest has a fixed compound type of u32 and must be a 32-bit
register.

See this pseudocode:

int popcount(unsigned int a)
{

int d = 0;
while (a != 0) {

if (a & 1) d++;
a >>= 1;

}
return d;

}

See Table 5–7 (below).

Table 5–7 Inputs and Results for popcount Instruction

Input Result
00000000 0
00ffffff 24
7fffffff 31
01ffffff 25
ffffffff 32
ffff0f00 20

Examples
and_b1 $c0, $c2, $c3;
and_b32 $s0, $s2, $s3;
and_b64 $d0, $d1, $d2;

or_b1 $c0, $c2, $c3;
or_b32 $s0, $s2, $s3;
or_b64 $d0, $d1, $d2;

xor_b1 $c0, $c2, $c3;
xor_b32 $s0, $s2, $s3;
xor_b64 $d0, $d1, $d2;

not_b1 $c1, $c2;
not_b32 $s0, $s2;
not_b64 $d0, $d1;

popcount_u32_b32 $s1, $s2;
popcount_u32_b64 $s1, $d2;

126 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 127

5.7 Bit String Instructions
A common instruction on elements is packing or unpacking a bit string. HSAIL provides bit string operations
to access bit and byte strings within elements.

5.7.1 Syntax

Table 5–8 Syntax for Bit String Instructions

Opcode and Modifiers Operands
bitextract_TypeLength dest, src0, src1, src2
bitinsert_TypeLength dest, src0, src1, src2, src3
bitmask_TypeLength dest, src0, src1
bitrev_TypeLength dest, src0
bitselect_TypeLength dest, src0, src1, src2
firstbit_u32_TypeLength dest, src0
lastbit_u32_TypeLength dest, src0

Explanation of Modifiers (see Table 4–2 (page 99))

Type: b for bitmask, bitrev, and bitselect; s and u for bitextract, bitinsert, firstbit, and lastbit.

Length: 32, 64.

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register. Must match the size of Length.

src0, src1, src2: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.6. BRIG Syntax for Bit String Instructions (page 350).

Description

bitextract

Extracts a range of bits.

src0 and dest are treated as the TypeLength of the instruction. src1 and src2 are treated as
u32.

The least significant 5 (for 32-bit) or 6 (for 64-bit) bits of src1 specify bit offset from bit 0. The least
significant 5 (for 32-bit) or 6 (for 64-bit) of src2 specify a bit-field width. src0 specifies the
replacement bits.

The bits are extracted from src0 starting at bit position offset and extending for width bits and placed
into the destination dest.

The result is undefined if the bit offset plus bit-field width is greater than the dest operand length.

bitextract_s sign-extends the most significant bit of the extracted bit field. bitextract_u zero-
extends the extracted bit field.

offset = src1 & (operation.length == 32 ? 31 : 63);
width = src2 & (operation.length == 32 ? 31 : 63);

Chapter 5. Arithmetic Instructions 5.7 Bit String Instructions

Chapter 5. Arithmetic Instructions 5.7 Bit String Instructions

if (width == 0) {
dest = 0;

} else {
dest = (src0 << (operation.length - width - offset))

>> (operation.length - width);
// signed or unsigned >>, depending on instruction.type

}

bitinsert

Replaces a range of bits.

src0, src1, and dest are treated as the TypeLength of the instruction. src2 and src3 are
treated as u32.

The least significant 5 (for 32-bit) or 6 (for 64-bit) bits of src2 specify bit offset from bit 0. The least
significant 5 (for 32-bit) or 6 (for 64-bit) of src3 specify a bit-field width. src0 specifies the bits into
which the replacement bits specified by src1 are inserted.

The result is undefined if the bit offset plus bit-field width is greater than the dest operand length.

The bitinsert instruction supports both signed and unsigned forms to aid readers of the code,
though both forms compute the same result.

offset = src2 & (operation.length == 32 ? 31 : 63);
width = src3 & (operation.length == 32 ? 31 : 63);
mask = (1 << width) - 1;
dest = (src0 & ~(mask << offset)) | ((src1 & mask) << offset);

bitmask

Creates a bit mask that can be used with bitselect.

dest is treated as the TypeLength of the instruction. src0 and src1 are treated as u32.

The least significant 5 (for 32-bit) or 6 (for 64-bit) bits of src0 specify bit offset from bit 0. The least
significant 5 (for 32-bit) or 6 (for 64-bit) of src1 specify a bit-mask width. dest is set to a bit mask that
contains width consecutive 1 bits starting at offset.

The result is undefined if the bit offset plus bit mask width is greater than the dest operand length.

offset = src0 & (operation.length == 32 ? 31 : 63);
width = src1 & (operation.length == 32 ? 31 : 63);
mask = (1 << width) - 1;
dest = mask << offset;

bitrev

Reverses the bits in a register. For example, given 0x12345678, the result would be 0x1e6a2c48.

bitselect

Bit field select. This instruction sets the destination dest to selected bits of src1 and src2. The
source src0 is a mask used to select bits from src1 or src2, using this formula:

dest = (src1 & src0) | (src2 & ~src0)

firstbit_u

For unsigned inputs, firstbit finds the first bit set to 1 in a number starting from the most significant
bit. For example:

128 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 129

l firstbit_u32_u32 of 0xffffff (all 1's) returns 0

l firstbit_u32_u32 of 0x7fffffff (one 0 followed by 31 1's) returns 1

l firstbit_u32_u32 of 0x01ffffff (seven 0's followed by 25 1's) returns 7

If no bits or all bits in src0 are set, then dest is set to −1. The result is always a 32-bit register.

Length applies only to the source.

See this pseudocode:

int firstbit_u(uint a)
{

if (a == 0)
return -1;

int pos = 0;
while ((int)a > 0) {

a <<= 1; pos++;
}
return pos;

}

See Table 5–9 (next page).

firstbit_s

For signed inputs, firstbit finds the first bit set in a positive integer starting from the most
significant bit, or finds the first bit clear in a negative integer from the most significant bit.

If no bits in src0 are set, then dest is set to −1. The result is always a 32-bit register.

Length applies only to the source.

See this pseudocode:

int firstbit_s (int a)
{

uint u = a >= 0? a: ~a; // complement negative numbers
return firstbit_u(u);

}

See Table 5–9 (next page).

lastbit

Finds the first bit set to 1 in a number starting from the least significant bit. For example, lastbit of
0x00000001 produces 0. If no bits in src0 are set, then dest is set to −1. The result is always a 32-bit
register.

Length applies only to the source.

The lastbit instruction supports both signed and unsigned forms to aid readers of the code, though
both forms compute the same result.

See this pseudocode:

int lastbit(uint a)
{

if (a == 0) return -1;
int pos = 0;
while ((a&1) != 1) {

a >>= 1; pos++;
}

Chapter 5. Arithmetic Instructions 5.7 Bit String Instructions

Chapter 5. Arithmetic Instructions 5.8 Copy (Move) Instructions

return pos;
}

See Table 5–9 (below).

Table 5–9 Inputs and Results for firstbit and lastbit Instructions

Input Result for firstbit Result for lastbit
00000000 -1 -1
00ffffff 8 0
7fffffff 1 0
01ffffff 7 0
ffffffff 0 0
ffff0f00 0 8

Examples
bitrev_b32 $s1, $s2;
bitrev_b64 $d1, 0x234;

bitextract_s32 $s1, $s1, 2, 3;
bitextract_u64 $d1, $d1, $s1, $s2;

bitinsert_s32 $s1, $s1, $s2, 2, 3;
bitinsert_u64 $d1, $d2, $d3, $s1, $s2;

bitmask_b32 $s0, $s1, $s2;

bitselect_b32 $s3, $s0, $s3, $s4;

firstbit_u32_s32 $s0, $s0;
firstbit_u32_u64 $s0, $d6;

lastbit_u32_u32 $s0, $s0;
lastbit_u32_s64 $s0, $d6;

5.8 Copy (Move) Instructions
These instructions perform copy or move operations.

If the Base profile has been specified then the 64-bit floating-point type (f64) is not supported (see 16.2.1.
Base Profile Requirements (page 289)).

For the small machine model sig64 is not supported, and for the large machine model sig32 is not
supported (see 2.9. Small and Large Machine Models (page 39)).

5.8.1 Syntax

130 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 131

Table 5–10 Syntax for Copy (Move) Instructions

Opcode and Modifiers Operands
combine_v2_b64_b32 dest, (src0,src1)

combine_v4_b128_b32 dest, (src0,src1,src2,src3)

combine_v2_b128_b64 dest, (src0,src1)

expand_v2_b32_b64 (dest0,dest1), src0

expand_v4_b32_b128 (dest0,dest1,dest2,dest3), src0

expand_v2_b64_b128 (dest0,dest1), src0

lda_segment_uLength dest, address
mov_moveType dest, src0

Explanation of Modifiers

segment: Optional segment: global, group, private, kernarg or readonly. If omitted, flat is used. See 2.8. Segments
(page 31).

Length: 1, 32, 64, 128 (see Table 4–2 (page 99)). For lda must match the address size (see Table 2–3 (page 40)).

moveType: b1, b32, b64, b128, u32, u64, s32, s64, f16, f32, roimg, woimg, rwimg, samp. In addition, can be f64 if the
Base profile is not specified, sig32 for small machine model, and sig64 for large machine model. See 2.9. Small
and Large Machine Models (page 39) and 16.2.1. Base Profile Requirements (page 289).

Explanation of Operands (see 4.16. Operands (page 104))

dest, dest0, dest1, dest2, dest3: Destination.

src0, src1, src2, src3: Sources. Can be a register or immediate value.

address: An address expression. See 4.18. Address Expressions (page 106).

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.7. BRIG Syntax for Copy (Move) Instructions (page 350).

Description

combine

Combines the values in the multiple source registers src0, src1, and so forth to form a single result,
which is stored in the destination register dest. src0 becomes the least significant bits, src1 the next
least significant bits, and so forth.

This instruction has a vector source made up of two or four registers. The length of each source
multiplied by the number of source registers must equal the length of the destination register.

expand

Splits the value in the source operand src0 into multiple parts and stores them in the multiple
destination registers dest0, dest1, and so forth. The least significant bits of the value are stored in
dest0, the next least significant bits in dest1, and so forth.

This instruction has a destination made up of two or four registers. The length of each destination
multiplied by the number of destination registers must equal the length of the source operand.

Chapter 5. Arithmetic Instructions 5.8 Copy (Move) Instructions

Chapter 5. Arithmetic Instructions 5.8 Copy (Move) Instructions

lda

This instruction sets the destination dest to the address of the source.

If segment is present, the address is a segment address of that kind. If segment is omitted, the
address is a flat address.

The address kind must match the source address expression. See 6.1.1. How Addresses Are Formed
(page 166). The size of dest must match the address size of the segment. See Table 2–3 (page 40).

The address of a kernel or function cannot be taken. The HSA runtime can be used to obtain kernel and
indirect function code handles. The scall instruction can be used to achieve the equivalent of indirect
calls.

The address of a label cannot be taken. The sbr instruction can be used to achieve the equivalent of
indirect branches.

The address of a spill segment variable cannot be taken.

The address of an arg segment variable cannot be taken: neither a function formal argument, nor arg
block actual argument.

This instruction can also be used to take the byte address of a kernel's formal arguments in the kernarg
segment.

This instruction can be followed by an stof or ftos instruction to convert to a flat or segment address
if necessary.

mov

Copies a value of type moveType from source src0 into the destination dest.

It is required that, when moving a value that is of type roimg, woimg, rwimg, samp, sig32 or sig64,
moveType should be specified accordingly (see 7.1.9. Using Image Instructions (page 216) and 6.8.
Notification (signal) Instructions (page 187)).

If moveType is f16, the most significant 16 bits of the destination s register are undefined. If the
source is also an s register, then it is not required that the most significant 16 bits of the destination
match the most significant 16 bits of the source. See 4.19.1. Floating-Point Numbers (page 109).

5.8.2 Additional Information About lda

Assume the following:

l There is a variable %g in the group segment with group segment address 20.

l The group segment starts at flat address x.

l Register $d0 contains the following flat address: x + 10.

If the address contains an identifier, then the segment for the identifier must agree with the segment used
in the instruction. lda only computes addresses. It does not convert between segments and flat addressing.

lda_u64 $d1, [$d0 + 10]; // sets $d1 to the flat address x + 20
mov_b64 $d1, $d0; // sets $d1 to the flat address x + 10

lda_group_u32 $s1, [%g]; // loads the segment address of %g into $s1
stof_group_u64_u32 $d1, $s1; // convert $s1 to flat address in large machine

// model; result is (x + 20)

132 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 133

Examples
combine_v2_b64_b32 $d0, ($s0, $s1);
combine_v4_b128_b32 $q0, ($s0, $s1, $s2, $s3);
combine_v2_b128_b64 $q0, ($d0, $d1);

expand_v2_b32_b64 ($s0, $s1), $d0;
expand_v4_b32_b128 ($s0, $s1, $s2, $s3), $q0;
expand_v2_b64_b128 ($d0, $d1), $q0;

global_u32 %g[3];
lda_global_u64 $d1, [%g];
lda_global_u64 $d1, [$d1 + 8];
lda_private_u32 $s1, [&p];

mov_b1 $c1, 0;

mov_b32 $s1, 0;
mov_b32 $s1, 0.0f;

mov_b64 $d1, 0;
mov_b64 $d1, 0.0;

5.9 Packed Data Instructions
These instructions perform shuffle, interleave, pack, and unpack operations on packed data. In addition,
many of the integer and floating-point instructions support packed data as does the cmp instruction.

If the Base profile has been specified then the 64-bit packed floating-point type (2xf64) is not supported
(see 16.2.1. Base Profile Requirements (page 289)).

See also:

l 5.2. Integer Arithmetic Instructions (page 116)

l 5.11. Floating-Point Arithmetic Instructions (page 140)

l 5.18. Compare (cmp) Instruction (page 155)

See Table 5–11 (below) and Table 5–12 (next page).

5.9.1 Syntax

Table 5–11 Syntax for Shuffle and Interleave Instructions

Opcodes and Modifiers Operands
shuffle_TypeLength dest, src0, src1, src2
unpacklo_TypeLength dest, src0, src1
unpackhi_TypeLength dest, src0, src1

Explanation of Modifiers (see 4.13.2. Packed Data Types (page 100))

Type: s, u, f.

Length: 8x4, 8x8, 16x2, 16x4, 32x2

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination. See the Description below.

src0, src1: Sources. Must be a packed register an immediate value.

src2: Source. Must be a constant value used to select elements. WAVESIZE is not allowed. See Table 5–13 (page 136).

Chapter 5. Arithmetic Instructions 5.9 Packed Data Instructions

Chapter 5. Arithmetic Instructions 5.9 Packed Data Instructions

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.8. BRIG Syntax for Packed Data Instructions (page 350).

Table 5–12 Syntax for Pack and Unpack Instructions

Opcodes and Modifiers Operands
pack_destTypedestLength_srcTypesrcLength dest, src0, src1, src2
unpack_destTypedestLength_srcTypesrcLength dest, src0, src1

Explanation of Modifiers

destType: s, u, f.

srcType: s, u, f.

destLength:
For pack, can be 8x4, 8x8, 8x16, 16x2, 16x4, 16x8, 32x2, 32x4, 64x2. If the Base profile has been specified, 64x2 is
not supported if destType is f.
For unpack, can be 32, 64, and, if destType is f, can be 16. If the Base profile has been specified, 64 is not
supported if destType is f.

srcLength:
For pack, can be 32, 64, and, if srcType is f, can be 16. If the Base profile has been specified, 64 is not supported if
srcType is f.
For unpack, can be 8x4, 8x8, 8x16, 16x2, 16x4, 16x8, 32x2, 32x4, 64x2. If the Base profile has been specified, 64x2 is
not supported if srcType is f.

See Table 4–2 (page 99), Table 4–3 (page 100) and 16.2.1. Base Profile Requirements (page 289).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src0, src1, src2: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.8. BRIG Syntax for Packed Data Instructions (page 350).

Description

shuffle

Selects half of the elements of src0 based on controls in src2 and copies them into the lower half of
the dest. It then selects half of the elements of src1 based on controls in src2 and copies them into
the upper half of the dest. src2 has the fixed compound type of b32. See 5.9.2. Controls in src2 for
shuffle Instruction (page 136).

unpacklo

Copies and interleaves the lower half of the elements from each source into the destination. See 5.9.4.
Examples of unpacklo and unpackhi Instructions (page 139).

134 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 135

unpackhi

Copies and interleaves the upper half of the elements from each source into the destination. See 5.9.4.
Examples of unpacklo and unpackhi Instructions (page 139).

pack

Assigns the elements of the packed value in src0 to dest, replacing the element specified by src2
with the value from src1.

src0 is the same packed type as dest.

src2 has the fixed compound type of u32. It specifies the index of the element to pack.

If the element count is 2 (that is, the Length ends with x2), the index is specified in the least significant
bit of src2.

If the element count is 4 (that is, the Length ends with x4), the index is specified in the least significant
2 bits of src2.

If the element count is 8 (that is, the Length ends with x8), the index is specified in the least significant
3 bits of src2.

If the element count is 16 (that is, the Length ends with x16), the index is specified in the least
significant 4 bits of src2.

The index 0 corresponds to the least significant bits, with higher values corresponding to elements with
serially higher significant bits.

src1 has the compound type srcTypesrcLength.

See 4.16. Operands (page 104). The normal rules for source and destination operands apply but using
the destination packed type's element compound type:

l The source and destination type (s, u, f) must match.

l For integer types, if the packed destination type's element size is 8 or 16 then the source
compound type size must be 32, otherwise it must be the same as the packed destination type's
element size. If the source is a register, the register must be the size of the source compound
type. If the source size is bigger than the destination type's element size, then the value will be
truncated and the least significant bits used.

l For f32 and f64 types, if the source is a register, its size must match the destination type's
element size.

l For f16 type, if the source is a register, it must be an s register, and the least significant 16 bits
are used. See 4.19.1. Floating-Point Numbers (page 109).

unpack

Assigns the element specified by src1 from the packed value in src0 to dest.

src1 has the fixed compound type of u32. It specifies the index of the element to unpack.

If the element count is 2 (that is, the Length ends with x2), the index is specified in the least significant
bit of src1.

If the element count is 4 (that is, the Length ends with x4), the index is specified in the least significant
2 bits of src1.

Chapter 5. Arithmetic Instructions 5.9 Packed Data Instructions

Chapter 5. Arithmetic Instructions 5.9 Packed Data Instructions

If the element count is 8 (that is, the Length ends with x8), the index is specified in the least significant
3 bits of src1.

If the element count is 16 (that is, the Length ends with x16), the index is specified in the least
significant 4 bits of src1.

The index 0 corresponds to the least significant bits, with higher values corresponding to elements with
serially higher significant bits.

src0 has the compound type srcTypesrcLength.

See 4.16. Operands (page 104). The normal rules for source and destination operands apply but using
the packed type's element compound type:

l The source and destination type (s, u, f) must match.

l For integer types, if the packed source type's element size is 8 or 16 then the destination
compound type size must be 32, otherwise it must be the same as the packed source type's
element size. The destination register must be the size of the destination compound type. If the
destination compound type size is bigger than the source type's element size, then the value will
be sign-extended for s and zero-extended for u.

l For f32 and f64 types, the destination compound type must match the packed source type's
element type. The destination register must be the size of the destination compound type.

l For f16 type, the destination register must be an s register. The packed element value is stored
in the least significant 16 bits and the most significant 16 bits are undefined. See 4.19.1. Floating-
Point Numbers (page 109).

5.9.2 Controls in src2 for shuffle Instruction

src2 of type b32 contains a set of bit selectors as shown in the table below.

The second column shows where the bits are copied to in the destination.

Table 5–13 Bit Selectors for shuffle instruction

src2 Bits for Packed Data Types s8x4 and u8x4 Copied to

1-0 selects one of four bytes from src0 dest bits 7-0

3-2 selects one of four bytes from src0 dest bits 15-8

5-4 selects one of four bytes from src1 dest bits 23-16

7-6 selects one of four bytes from src1 dest bits 31-24

src2 Bits for Packed Data Types s8x8 and u8x8 Copied to

2-0 selects one of eight bytes from src0 dest bits 7-0

5-3 selects one of eight bytes from src0 dest bits 15-8

8-6 selects one of eight bytes from src0 dest bits 23-16

11-9 selects one of eight bytes from src0 dest bits 31-24

14-12 selects one of eight bytes from src1 dest bits 39-32

17-15 selects one of eight bytes from src1 dest bits 47-40

20-18 selects one of eight bytes from src1 dest bits 55-48

23-21 selects one of eight bytes from src1 dest bits 63-56

136 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 137

src2 Bits for Packed Data Types s16x2, u16x2, and f16x2 Copied to

0 selects one of two 16-bit values from src0 dest bits 15-0

1 selects one of two 16-bit values from src1 dest bits 31-16

src2 Bits for Packed Data Types s16x4, u16x4, and f16x4 Copied to

1-0 selects one of four 16-bit values from src0 dest bits 15-0

3-2 selects one of four 16-bit values from src1 dest bits 31-16

5-4 selects one of four 16-bit values from src0 dest bits 47-32

7-6 selects one of four 16-bit values from src1 dest bits 63-48

src2 Bits for Packed Data Type f32x2 Copied to

0 selects one of two 32-bit values from src0 dest bits 31-0

1 selects one of two 32-bit values from src1 dest bits 63-32

5.9.3 Common Uses for shuffle Instruction

Common uses for the shuffle instruction include broadcast, swap, and rotate.

Broadcast

Broadcast the least significant data element into the destination:

shuffle_u8x4 dest, src0, src1, 0;

src2 is the constant 00 00 00 00 in bits.

Broadcast the second data element into the destination:

shuffle_u8x4 dest, src0, src1, 0x55;

src2 is the constant 01 01 01 01 in bits.

Broadcast the third data element into the destination:

shuffle_u8x4 dest, src0, src1, 0xaa;

src2 is the constant 10 10 10 10 in bits.

Broadcast the most significant data element into the destination:

shuffle_u8x4 dest, src0, src0, 0xff;

src2 is the constant 11 11 11 11 in bits.

See the figure below.

Chapter 5. Arithmetic Instructions 5.9 Packed Data Instructions

Chapter 5. Arithmetic Instructions 5.9 Packed Data Instructions

Figure 5–1 Example of Broadcast

Swap

Swap (switch the order of data elements; the reverse is 0x1b):

shuffle_u8x4 dest, src0, src0, 0x1b;

src2 is the constant 00 01 10 11 in bits.

Rotate

To rotate:

l 0x93 is the left rotate (shifting data to the left); the most significant data element is moved to the
least significant position.

l 0x39 is the right rotate (shifting data to the right); the least significant data element is moved to the
most significant position.

See the figure below, which is an example of a shuffle with two specific masks.

Figure 5–2 Example of Rotate

138 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 139

5.9.4 Examples of unpacklo and unpackhi Instructions

See the figure below.

Figure 5–3 Example of Unpack

Examples
shuffle_u8x4 $s10, $s12, $s12, 0x55;
unpacklo_u8x4 $s1, $s2, 72;
unpackhi_f16x2 $s3, $s3,$s4;

// Packing with no conversions:
pack_f32x2_f32 $d1, $d1, $s2, 1;
pack_f32x4_f32 $q1, $q2, $s2, 3;
pack_u32x2_u32 $d1, $d2, $s1, 2;
pack_s64x2_s64 $q1, $q1, $d1, $s1;

// Packing with integer truncation:
pack_u8x4_u32 $s1, $s2, $s3, 2;
pack_s16x4_s16 $d1, $d1, $s2, 0;
pack_u32x2_u32 $d1, $d2, $s3, 0;

// Packing an f16:
pack_f16x2_f16 $s1, $s2, $s3, 1;
pack_f16x4_f16 $d1, $d2, $s3, 3;

// Unpacking with no conversions:
unpack_f32_f32x2 $s1, $d2, 1;
unpack_f32_f32x4 $s1, $q2, 3;
unpack_u32_u32x4 $s1, $q1, 2;
unpack_s64_s64x2 $d1, $q1, 0;

// Unpacking with integer sign or zero extension:
unpack_u32_u8x4 $s1, $s2, 2;
unpack_s32_s16x4 $s1, $d1, 0;
unpack_u32_u32x4 $s1, $q1, 2;
unpack_s32_s32x2 $s1, $d2, 0;

// Unpacking an f16:
unpack_f16_f16x2 $s1, $s2, 1;
unpack_f16_f16x4 $s1, $d2, 3;

Chapter 5. Arithmetic Instructions 5.9 Packed Data Instructions

Chapter 5. Arithmetic Instructions 5.10 Bit ConditionalMove (cmov) Instruction

5.10 Bit Conditional Move (cmov) Instruction
The cmov instruction performs a bit conditional move.

There is a packed form of this instruction.

5.10.1 Syntax

Table 5–14 Syntax for Bit Conditional Move (cmov) Instruction

Opcode and Modifiers Operands
cmov_TypeLength dest, src0, src1, src2

Explanation of Modifiers (see Table 4–2 (page 99))

Type: For the regular form: b. For the packed form: s, u, f.

Length: For the regular form, Length can be 1, 32, 64. Applies to src1, and src2. For the packed form, Length can
be any packed type.

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register. For the packed form, if the length is 32 bits, then dest must be an s register; if the
length is 64 bits, then dest must be a d register; if the length is 128 bits, then dest must be a q register.

src0, src1, src2: Sources. For the regular form, src0 must be a control (c) register or an immediate value and is of
type b1. For the packed form, if the Length is 32 bits, then src0 must be an s register or immediate value of type
uLength; if the Length is 64 bits, then src0 must be a d register or immediate value of type uLength; if the Length

is 128 bits, then src0 must be a q register or immediate value of type uLength.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.9. BRIG Syntax for Bit Conditional Move (cmov) Instruction (page 351).

Description

The regular form of cmov conditionally moves either of two 1-bit, 32-bit, 64-bit, or 128-bit values into the
destination register dest. If the source src0 is false (0), the destination is set to the value of src2;
otherwise, the destination is set to the value of src1.

The packed form of cmov conditionally moves each element of the packed type independently. If the
element in src0 is false (0), the corresponding destination element is set to the corresponding element of
src2; otherwise, the destination is set to the corresponding element of src1.

Examples
cmov_b32 $s1, $c3, $s1, $s2;
cmov_b64 $d1, $c3, $d1, $d2;
cmov_b32 $s1, $c0, $s1, $s2;

cmov_u8x4 $s1, $s0, $s1, $s2;
cmov_s8x4 $s1, $s0, $s1, $s2;
cmov_s8x8 $d1, $d0, $d1, $d2;

5.11 Floating-Point Arithmetic Instructions
These instructions perform floating-point arithmetic and follow the IEEE/ANSI Standard 754-2008. However,
there are some important differences. See 4.19. Floating Point (page 107).

5.11.1 Syntax

140 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 141

Table 5–15 Syntax for Floating-Point Arithmetic Instructions

Opcode and Modifiers Operands
add_ftz_round_TypeLength dest, src0, src1

ceil_ftz_TypeLength dest, src0

div_ftz_round_TypeLength dest, src0, src1

floor_ftz_TypeLength dest, src0

fma_ftz_round_TypeLength dest, src0, src1, src2

fract_ftz_round_TypeLength dest, src0

max_ftz_TypeLength dest, src0, src1

min_ftz_TypeLength dest, src0, src1

mul_ftz_round_TypeLength dest, src0, src1

rint_ftz_TypeLength dest, src0

sqrt_ftz_round_TypeLength dest, src0

sub_ftz_round_TypeLength dest, src0, src1

trunc_ftz_TypeLength dest, src0

Explanation of Modifiers

ftz: Required if the Base profile has been specified, otherwise optional. If specified, subnormal source values and
tiny result values are flushed to zero. See 4.19.3. Flush to Zero (ftz) (page 110).

round: Optional rounding mode. Possible values are up, down, zero, or near. If the Base profile has been specified,
then must be omitted. If omitted, the default floating-point rounding mode specified by the module header is
used. See Chapter 14. module Header (page 284).

Type: f. See Table 4–2 (page 99).

Length: 16, 32, and, if the Base profile has not been specified, 64. See Table 4–2 (page 99) and 16.2.1. Base Profile
Requirements (page 289).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src0, src1, src2: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

Floating-point exceptions are allowed.

Table 5–16 Syntax for Packed Versions of Floating-Point Arithmetic Instructions

Opcode and Modifiers Operands
add_ftz_round_Control_TypeLength dest, src0, src1

ceil_ftz_Control_TypeLength dest, src0

div_ftz_round_Control_TypeLength dest, src0, src1

floor_ftz_Control_TypeLength dest, src0

fract_ftz_round_Control_TypeLength dest, src0

max_ftz_Control_TypeLength dest, src0

min_ftz_Control_TypeLength dest, src0, src1

mul_ftz_round_Control_TypeLength dest, src0, src1

rint_ftz_Control_TypeLength dest, src0

sqrt_ftz_round_Control_TypeLength dest, src0

sub_ftz_round_Control_TypeLength dest, src0, src1

trunc_ftz_Control_TypeLength dest, src0

Chapter 5. Arithmetic Instructions 5.11 Floating-Point Arithmetic Instructions

Chapter 5. Arithmetic Instructions 5.11 Floating-Point Arithmetic Instructions

Explanation of Modifiers

ftz: Required if the Base profile has been specified, otherwise optional. If specified, subnormal source values and
tiny result values are flushed to zero. See 4.19.3. Flush to Zero (ftz) (page 110).

round: Optional up, down, zero, or near rounding mode. If the Base profile has been specified, then must be
omitted. If omitted, the default floating-point rounding mode specified by the module header is used. See Chapter
14. module Header (page 284).

Control for ceil, floor, fract, rint, sqrt, and trunc: p or s.
Control for add, div, max, min, mul, and sub: pp, ps, sp, or ss.
See 4.14. Packing Controls for Packed Data (page 101).

TypeLength: f16x2, f16x4, f16x8, f32x2, f32x4, and, if the Base profile has not been specified, f64x2. See 4.13.2.
Packed Data Types (page 100) and 16.2.1. Base Profile Requirements (page 289).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src0, src1: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

Floating-point exceptions are allowed.

For BRIG syntax, see 18.7.1.10. BRIG Syntax for Floating-Point Arithmetic Instructions (page 351).

Description

add

Performs the IEEE/ANSI Standard 754-2008 standard floating-point add.

ceil

Rounds the floating-point source src0 toward positive infinity to produce a floating-point integral
number that is assigned to the destination dest. If the source has an infinity value, the result will be the
same infinity value. No exceptions are generated besides invalid operation for a signaling NaN source.

div

Performs the IEEE/ANSI Standard 754-2008 standard floating-point divide. Computes source src0
divided by source src1 and stores the result in the destination dest.

div must return a correctly rounded result in the Full profile and return a result less than or equal to
2.5 ULP (see 4.19.6. Unit of Least Precision (ULP) (page 112)) of the mathematically accurate value in
the Base profile. See Chapter 16. Profiles (page 288).

floor

Rounds the floating-point source src0 toward negative infinity to produce a floating-point integral
number that is assigned to the destination dest. If the source has an infinity value, the result will be the
same infinity value. No exceptions are generated besides invalid operation for a signaling NaN source.

fma

The floating-point fma (fused multiply add) computes src0 * src1 + src2 with unbounded range
and precision. The resulting value is then rounded once using the specified rounding mode.

142 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 143

No underflow, overflow, or inexact exception can be generated for the multiply. However, these
exceptions can be generated by the addition. Thus, fma differs from a mul followed by an add.

fma is not supported as a packed operation, because it takes three source operands.

fract

Sets the destination dest to the fractional part of source src0.

src0’ = ftz ? flush_subnormal_to_zero(src0) : src0
dest = (src0’ == +0.0) ? +0.0

: (src0’ == -0.0) ? -0.0
: (src0’ == +inf) ? +0.0
: (src0’ == -inf) ? -0.0
: (isNaN(src0’)) ? NaN

src0’
: min(round

round_modifier, TypeLength
(src0’ - src0’), smallest_numeric

TypeLength
)

where:

smallest_numeric
f16

= 0x1.ffcp-1h
smallest_numeric

f32
= 0x1.fffffep-1f

smallest_numeric
f64

= 0x1.fffffffffffffp-1d

The min is used to ensure that the result of the fract operation of a small negative number is not 1.0
so that the result is in the half-open interval [0.0, 1.0).

NaN inputs are handled as described in 4.19.4. Not A Number (NaN) (page 111).

max

Computes the maximum of source src0 and source src1 and stores the result in the destination
dest.

max implements the maxNum operation as described in IEEE/ANSI Standard 754-2008. If one of the
inputs is a quiet NaN and the other input is not a NaN, then the non-NaN input is returned; otherwise
NaN inputs are handled as described in 4.19.4. Not A Number (NaN) (page 111).

min

Computes the minimum of source src0 and source src1 and stores the result in the destination
dest.

min implements the minNum operation as described in IEEE/ANSI Standard 754-2008. If one of the
inputs is a quiet NaN and the other input is not a NaN, then the non-NaN input is returned; otherwise
NaN inputs are handled as described in 4.19.4. Not A Number (NaN) (page 111).

mul

Multiplies source src0 by source src1 (following IEEE/ANSI Standard 754-2008 rules) and stores the
result in the destination dest.

rint

Rounds the floating-point source src0 toward the nearest integral number, choosing the even integral
value if there is a tie, to produce a floating-point integral number that is assigned to the destination
dest. If the source has an infinity value, the result will be the same infinity value. No exceptions are
generated besides invalid operation for a signaling NaN source.

Chapter 5. Arithmetic Instructions 5.11 Floating-Point Arithmetic Instructions

Chapter 5. Arithmetic Instructions 5.12 Floating-Point Optimization Instruction

sub

Subtracts source src1 from source src0 and places the result in the destination dest. The answer is
computed according to IEEE/ANSI Standard 754-2008 rules.

sqrt

Sets the destination dest to the square root of source src0.

If src0 is negative, must return a quiet NaN and generate the invalid operation exception.

sqrt returns the correctly rounded result for the Full profile and a result less than or equal to 1 ULP
(see 4.19.6. Unit of Least Precision (ULP) (page 112)) of the mathematically accurate value for the Base
profile. See Chapter 16. Profiles (page 288).

trunc

Rounds the floating-point source src0 toward zero to produce a floating-point integral number that is
assigned to the destination dest. If the source has an infinity value, the result will be the same infinity
value. No exceptions are generated besides invalid operation for a signaling NaN source.

Examples of Regular (Nonpacked) Instructions
add_f32 $s3,$s2,$s1;
add_f64 $d3,$d2,$d1;
div_f32 $s3,1.0f,$s1;
div_f64 $d3,1.0,$d0;
fma_f32 $s3,1.0f,$s1,23.0f;
fma_f64 $d3,1.0,$d0, $d3;
max_f32 $s3,1.0f,$s1;
max_f64 $d3,1.0,$d0;
min_f32 $s3,1.0f,$s1;
min_f64 $d3,1.0,$d0;
mul_f32 $s3,1.0f,$s1;
mul_f64 $d3,1.0,$d0;
sub_f32 $s3,1.0f,$s1;
sub_f64 $d3,1.0,$d0;
fract_f32 $s0, 3.2f;

Examples of Packed Instructions
add_pp_f16x2 $s1, $s0, $s3;
sub_pp_f16x2 $s1, $s0, $s3;

5.12 Floating-Point Optimization Instruction
Floating-point optimizations are intended to improve performance. High-level compilers should attempt to
generate these whenever possible.

5.12.1 Syntax

Table 5–17 Syntax for Floating-Point Optimization Instruction

Opcode and Modifiers Operands
mad_ftz_round_TypeLength dest, src0, src1, src2

Explanation of Modifiers

ftz: Required if the Base profile has been specified, otherwise optional. If specified, subnormal source values and
tiny result values are flushed to zero. See 4.19.3. Flush to Zero (ftz) (page 110).

144 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 145

Explanation of Modifiers

round: Optional rounding mode. Possible values are up, down, zero, or near. If the Base profile has been specified,
then must be omitted. If omitted, the default floating-point rounding mode specified by the module header is
used. See Chapter 14. module Header (page 284).

Type: f. See Table 4–2 (page 99).

Length: 16, 32, and, if the Base profile has not been specified, 64. See Table 4–2 (page 99) and 16.2.1. Base Profile
Requirements (page 289).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src0, src1, src2: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

Floating-point exceptions are allowed.

For BRIG syntax, see 18.7.1.11. BRIG Syntax for Floating-Point Optimization Instruction (page 352).

Description

The floating-point mad (multiply add) instruction multiplies source src0 times source src1 and then adds
source src2. The result is stored in the destination dest. The computation must be performed using the
semantic equivalent of one of the following methods:

l Single Round Method:

fma_ftz_round_fLength dest, src0, src1, scr2;

l Double Round Method:

mul_ftz_round_fLength temp, src0, src1;
add_ftz_round_fLength dest, temp, src2;

Where each instruction uses the same modifiers and type as the mad instruction.

No alternative method is allowed.

The same method must be used for all floating-point mad instructions on a specific kernel agent. An HSA
runtime query is available to determine the method used on a kernel agent.

The floating-point mad instruction enables high level compilers to generate a contracted multiply-addition
without prescribing whether single or double rounding behavior should be used. This allows the finalizer for
a kernel agent to generate either a separate multiply and addition with intermediate rounding, or an fma
instruction without intermediate rounding, depending on which approach has better performance in terms
of speed or power.

Floating-point mad is not supported as a packed instruction, because it takes three source operands.

Examples
mad_f16 $s1, $s2, $s3, $s5;
mad_f32 $s1, $s2, $s3, $s5;
mad_f64 $d1, $d2, $d3, $d2;

Chapter 5. Arithmetic Instructions 5.12 Floating-Point Optimization Instruction

Chapter 5. Arithmetic Instructions 5.13 Floating-Point Bit Instructions

5.13 Floating-Point Bit Instructions
These instructions are performed as floating-point bit operations and follow the IEEE/ANSI Standard 754-
2008. See 4.19. Floating Point (page 107).

Since they are bit operations:

l They do not generate any exceptions, including underflow or inexact, nor invalid operation if any of
their inputs are signaling NaNs.

l They do not convert signaling NaNs to quiet NaNs.

l The ftz modifier is not supported and they do not flush subnormal values to 0.0.

l The rounding modifier is not supported and no rounding is performed.

5.13.1 Syntax

Syntax for Floating-Point Bit Instructions

Opcode and Modifiers Operands
abs_TypeLength dest, src0

class_b1_TypeLength dest, src0, cond

copysign_TypeLength dest, src0, src1

neg_TypeLength dest, src0

Explanation of Modifiers (see 4.16. Operands (page 104)) (see Table 4–2 (page 99))

Type: f. See Table 4–2 (page 99).

Length: 16, 32, and, if the Base profile has not been specified, 64. See Table 4–2 (page 99) and 16.2.1. Base Profile
Requirements (page 289).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src0, src1: Sources. Can be a register or immediate value.

cond: Source bit set specifying the conditions being tested. Must be a register or immediate value of compound
type u32. See Table 5–18 (below).

Table 5–18 Class Instruction Source Operand Condition Bits

Condition being tested Bit value

Signaling NaN 0x001

Quiet NaN 0x002

Negative infinity 0x004

Negative normal 0x008

Negative subnormal 0x010

Negative zero 0x020

Positive zero 0x040

Positive subnormal 0x080

Positive normal 0x100

Positive infinity 0x200

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

146 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 147

Table 5–19 Syntax for Packed Versions of Floating-Point Bit Instructions

Opcode and Modifiers Operands
abs_Control_TypeLength dest, src0

copysign_Control_TypeLength dest, src0, src1

neg_Control_TypeLength dest, src0

Explanation of Modifiers

Control for abs, and neg: p or s.
Control for copysign: pp, ps, sp, or ss.
See 4.14. Packing Controls for Packed Data (page 101).

TypeLength: f16x2, f16x4, f16x8, f32x2, f32x4, and, if the Base profile has not been specified, f64x2. See 4.13.2.
Packed Data Types (page 100) and 16.2.1. Base Profile Requirements (page 289).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src0, src1: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.5. BRIG Syntax for Individual Bit Instructions (page 349).

Description

abs

Copies a floating-point operand src0 to the destination dest, setting the sign bit to 0 (positive). No
rounding is performed.

class

Tests the properties of a floating-point number in source src0, storing a 1 in the destination dest if
any of the conditions specified in cond are true. If all properties are false, dest is set to 0. dest must
be a control (c) register.

cond is interpreted using the values of Table 5–18 (previous page) which can be combined using
bitwise OR. All other bits are ignored. Thus, the following code will set the register c1 to 1 if $s1 is
either a signaling or quiet NaN:

class_b1_f32 $c1, $s1, 3;

copysign

Copies a floating-point operand src0 to the destination dest, setting the sign bit to the sign bit of
src1.

neg

Copies a floating-point operand src0 to a destination dest, reversing the sign bit.

Note that neg(x) is not the same as sub(+0.0, x). In addition to having no effects on the
exception state, neg(+0.0) is -0.0 and neg(-0.0) is +0.0, while sub(+0.0, x) is always +0.0
when x is either +0.0 or -0.0.

Chapter 5. Arithmetic Instructions 5.13 Floating-Point Bit Instructions

Chapter 5. Arithmetic Instructions 5.14 Native Floating-Point Instructions

Examples
abs_f32 $s1,$s2;
abs_f64 $d1,$d2;
class_b1_f32 $c1, $s1, 3;
class_b1_f32 $c1, $s1, $s2;
class_b1_f64 $c1, $d1, $s2;
class_b1_f64 $c1, $d1, 3;
copysign_f32 $s3,$s2,$s1;
copysign_f64 $d3,$d2,$d1;
neg_f32 $s3,1.0f;
neg_f64 $d3,1.0;

Examples of Packed Instructions
abs_p_f16x2 $s1, $s2;
abs_p_f32x2 $d1, $d1;
neg_p_f16x2 $s1, $s2;
add_pp_f16x2 $s1, $s0, $s3;

5.14 Native Floating-Point Instructions
The floating-point native instructions produce fast approximate implementation dependent values. They are
expected to take advantage of hardware acceleration and are intended to be used where speed is preferred
over accuracy.

For example, they can be used in device-specific libraries which know the accuracy of the native instructions
on that device. They can also be used in code that first performs tests to ensure they meet the accuracy
requirements for every value in the range required by the algorithm.

These instructions do not support rounding modes or the flush to zero (ftz) modifier. It is implementation
defined how they round the result, whether or not subnormal source operand values are flushed to zero,
whether or not tiny result values are flushed to zero, if NaN payloads are preserved (regardless of the
profile specified), or if exceptions are generated (including those resulting from signaling NaNs).

See 4.19. Floating Point (page 107).

5.14.1 Syntax

Table 5–20 Syntax for Native Floating-Point Instructions

Opcode and Modifiers Operands
ncos_f32 dest, src

nexp2_f32 dest, src

nfma_TypeLength dest, src0, src1, src2

nlog2_f32 dest, src

nrcp_TypeLength dest, src

nrsqrt_TypeLength dest, src

nsin_f32 dest, src

nsqrt_TypeLength dest, src

Explanation of Modifiers (see Table 4–2 (page 99))

Type: f.

Length: 16, 32, and, if the Base profile has not been specified, 64. See 16.2.1. Base Profile Requirements (page 289).

148 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 149

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src, src0, src1, src2: Sources. Can be a register or immediate value.

Exceptions (see 12.2. Hardware Exceptions (page 269))

Standard floating-point exceptions are allowed.

For BRIG syntax, see 18.7.1.13. BRIG Syntax for Native Floating-Point Instructions (page 353).

Description

ncos

Computes the cosine of the angle in source src and stores the result in the destination dest. The
angle src is in radians.

nexp2

Computes the base-2 exponential of a value.

nfma

The floating-point nfma (native fused multiply add) computes a src0 * src1 + src2 and stores the
result in the destination dest.

nlog2

Finds the base-2 logarithm of a value.

nrcp

Computes the floating-point reciprocal.

nrsqrt

Computes the reciprocal of the square root.

nsin

Computes the sine of the angle in source src and stores the result in the destination dest. The angle
src is in radians.

nsqrt

Computes the square root.

Examples
ncos_f32 $s1, $s0;

nexp2_f32 $s1, $s0;

nfma_f32 $s3, 1.0f, $s1, 23.0f;
nfma_f64 $d3, 1.0D, $d0, $d3;

nlog2_f32 $s1, $s0;

nrcp_f32 $s1, $s0;

Chapter 5. Arithmetic Instructions 5.14 Native Floating-Point Instructions

Chapter 5. Arithmetic Instructions 5.15 Multimedia Instructions

nrsqrt_f32 $s1, $s0;

nsin_f32 $s1, $s0;

5.15 Multimedia Instructions
These instructions support fast multimedia operations. The instructions work on special packed formats that
have up to four values packed into a single 32-bit register.

5.15.1 Syntax

Table 5–21 Syntax for Multimedia Instructions

Opcode Operands
bitalign_b32 dest, src0, src1, src2
bytealign_b32 dest, src0, src1, src2
lerp_u8x4 dest, src0, src1, src2
packcvt_u8x4_f32 dest, src0, src1, src2, src3
unpackcvt_f32_u8x4 dest, src0, src1
sad_u32_u32 dest, src0, src1, src2
sad_u32_u16x2 dest, src0, src1, src2
sad_u32_u8x4 dest, src0, src1, src2
sadhi_u16x2_u8x4 dest, src0, src1, src2

Explanation of Operands (see 4.16. Operands (page 104))

dest: The destination must be an s register.

src0, src1, src2, src3: Sources. Can be a register or immediate value, except src1 for unpackcvt must be a
constant with value 0, 1, 2, or 3. (WAVESIZE is not allowed.)

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.14. BRIG Syntax for Multimedia Instructions (page 353).

Description

bitalign

Used to align 32 bits within 64 bits of data on an arbitrary bit boundary. src2 is treated as a u32 value
and the least significant 5 bits used to specify a shift amount. The 32-bit src0 and src1 are treated as
the least significant and most significant bits of a 64-bit value respectively, which is shifted right by the
shift amount of bits, and the least significant 32 bits returned.

uint32 shift = src2 & 31;
uint64_t value = (((uint64_t)src1) << 32) | ((uint64_t)src0);
uint32_t dest = (uint32_t)((value >> shift) & 0xffffffff);

If src0 contains 0xA3A2A1A0 and src1 contains 0xB3B2B1B0, then:

l bitalign dest, src0, src1, 8 results in destination dest containing 0xB0A3A2A1.

l bitalign dest, src0, src1, 16 results in destination dest containing 0xB1B0A3A2.

150 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 151

l bitalign dest, src0, src1, 24 results in destination dest containing 0xB2B1B0A3.

bytealign

Used to align 32 bits within 64 bits of data on an arbitrary byte boundary. src2 is treated as a u32
value and the least significant 2 bits used to specify a shift amount. The 32-bit src0 and src1 are
treated as the least significant and most significant bits of a 64-bit value respectively, which is shifted
right by the shift amount of bytes, and the least significant 32 bits returned.

uint32 shift = (src2 & 3) * 8;
uint64_t value = (((uint64_t)src1) << 32) | ((uint64_t)src0);
uint32_t dest = (uint32_t)((value >> shift) & 0ffffffff);

If src0 contains 0xA3A2A1A0 and src1 contains 0xB3B2B1B0, then:

l bytealign dest, src0, src1, 1 results in destination dest containing 0xB0A3A2A1.

l bytealign dest, src0, src1, 2 results in destination dest containing 0xB1B0A3A2.

l bytealign dest, src0, src1, 3 results in destination dest containing 0xB2B1B0A3.

lerp

Linear interpolation (lerp) computes the unsigned 8-bit average of packed data. Useful in multimedia
applications that use unsigned 8-bit packed data to represent pixels.

Treating the sources as four 8-bit packed unsigned values, this instruction adds each byte of src0 and
src1 and the least significant bit of each byte of src2 and then divides each result by 2.

dest = (((((src0 >> 24) & 0xff) + ((src1 >> 24) & 0xff) +
((src2 >> 24) & 0x1)) >> 1)) & 0xff) << 24) |
(((((src0 >> 16) & 0xff) + ((src1 >> 16) & 0xff) +
((src2 >> 16) & 0x1)) >> 1)) & 0xff) << 16) |
(((((src0 >> 8) & 0xff) + ((src1 >> 8) & 0xff) +
((src2 >> 8) & 0x1)) >> 1)) & 0xff) << 8) |
(((src0 & 0xff) + (src1 & 0xff) + (src2 & 0x1)) >> 1)) & 0xff)

packcvt

Takes four floating-point numbers, converts them to unsigned integer values, and packs them into a
packed u8x4 value. Conversion is performed using round to nearest even. Values greater than 255.0
are converted to 255. Values less than 0.0 are converted to 0.

dest = (((uint32_t)(cvt_neari_sat_u8_f32(src0))) << 0) |
(((uint32_t)(cvt_neari_sat_u8_f32(src1))) << 8) |
(((uint32_t)(cvt_neari_sat_u8_f32(src2))) << 16) |
(((uint32_t)(cvt_neari_sat_u8_f32(src3))) << 24);

unpackcvt

Unpacks a single element from a packed u8x4 value and converts it to an f32. src1 specifies the
element and must be a constant u32 with a value of 0, 1, 2, or 3.

shift = src1 * 8;
dest = cvt_f32_u8((src0 >> shift) & 0xff);

sad

Computes the sum of the absolute differences of src0 and src1 and then adds src2 to the result.
src0 and src1 are either u32, u16x2, or u8x4 and the absolute difference is performed treating the
values as unsigned. The dest and src2 are u32.

Chapter 5. Arithmetic Instructions 5.15 Multimedia Instructions

Chapter 5. Arithmetic Instructions 5.15 Multimedia Instructions

l sad_u32_u32:

uint32_t abs_diff(uint32_t a, uint32_t b) {
return a < b ? b - a : a - b;

}

dest = abs_diff(src0, src1) + src2;

l sad_u32_u16x2:

uint32_t abs_diff(uint16_t a, uint16_t b) {
return a < b ? b - a : a - b;

}

dest = abs_diff((src0 >> 16) & 0xffff, (src1 >> 16) & 0xffff) +
abs_diff((src0 >> 0) & 0xffff, (src1 >> 0) & 0xffff) + src2;

l sad_u32_u8x4:

uint32_t abs_diff(uint8_t a, uint8_t b) {
return a < b ? b - a : a - b;

}

dest = abs_diff((src0 >> 24) & 0xff, (src1 >> 24) & 0xff) +
abs_diff((src0 >> 16) & 0xff, (src1 >> 16) & 0xff) +
abs_diff((src0 >> 8) & 0xff, (src1 >> 8) & 0xff) +
abs_diff((src0 >> 0) & 0xff, (src1 >> 0) & 0xff) + src2;

sadhi

Same as sad except the sum of absolute differences is added to the most significant 16 bits of dest.
dest and src2 are treated as a u16x2. src0 and src1 are treated as u8x4.

sadhi_u16x2_u8x4 can be used in combination with sad_u32_u8x4 to store two sets of sum of
absolute differences results in a single s register as a u16x2. In this case, care must be taken that the
sad_u32_u8x4 will not overflow the least significant 16 bits, and that adding src2 (which is treated
as the type u16x2) also does not overflow the least significant 16 bits.

l sadhi_u16x2_u8x4:

uint32_t abs_diff(uint8_t a, uint8_t b) {
return a < b ? b - a : a - b;

}

dest = (abs_diff((src0 >> 24) & 0xff, (src1 >> 24) & 0xff) << 16) +
(abs_diff((src0 >> 16) & 0xff, (src1 >> 16) & 0xff) << 16) +
(abs_diff((src0 >> 8) & 0xff, (src1 >> 8) & 0xff) << 16) +
(abs_diff((src0 >> 0) & 0xff, (src1 >> 0) & 0xff) << 16) +
src2;

Examples
bitalign_b32 $s5, $s0, $s1, $s2;

bytealign_b32 $s5, $s0, $s1, $s2;

lerp_u8x4 $s5, $s0, $s1, $s2;

packcvt_u8x4_f32 $s1, $s2, $s3, $s9, $s3;

unpackcvt_f32_u8x4 $s5, $s0, 0;

152 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 153

unpackcvt_f32_u8x4 $s5, $s0, 1;
unpackcvt_f32_u8x4 $s5, $s0, 2;
unpackcvt_f32_u8x4 $s5, $s0, 3;

sad_u32_u32 $s5, $s0, $s1, $s6;
sad_u32_u16x2 $s5, $s0, $s1, $s6;
sad_u32_u8x4 $s5, $s0, $s1, $s6;

sadhi_u16x2_u8x4 $s5, $s0, $s1, $s6;

5.16 Segment Checking (segmentp) Instruction
The segmentp instruction tests whether or not a given flat address is within a specific memory segment.

See also 5.17. Segment Conversion Instructions (next page).

5.16.1 Syntax

Table 5–22 Syntax for Segment Checking (segmentp) Instruction

Opcode and Modifiers Operands
segmentp_segment_nonull_b1_srcTypesrcLength dest, src

Explanation of Modifiers (see Table 4–2 (page 99))

segment: Can be global, group or private. See 2.8. Segments (page 31).

nonull: Optional. If present, indicates that the src operand will not be the nullptr address value for the segment.
See the Description below.

srcType: u.

srcLength: 32, 64. The size of the source address. Must match the address size of flat addresses. See Table 2–3
(page 40).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register. Must be a control (c) register.

src: Source for the flat address that is being checked. Can be a register or immediate value. See Table 2–3 (page
40).

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.15. BRIG Syntax for Segment Checking (segmentp) Instruction (page 353).

Description

This instruction sets the destination dest to true (1) if the flat address in source src is either the nullptr
value for the flat address, or is within the address range of the specified segment. If the source is a register,
it must match the size of a flat address. See 2.9. Small and Large Machine Models (page 39).

If it is known that the src operand can never have the flat address null pointer value, then the nonull
modifier can be specified. On some implementations this might be more efficient. The result is undefined if
the nonull modifier is specified and src is the nullptr value for the flat address. On some
implementations this might result in incorrect values. See 17.10. Segment Address Conversion (page 296).

See 2.8.4. Memory Segment Access Rules (page 36).

Examples

Chapter 5. Arithmetic Instructions 5.16 Segment Checking (segmentp) Instruction

Chapter 5. Arithmetic Instructions 5.17 Segment Conversion Instructions

segmentp_private_b1_u32 $c1, $s0; // small machine model
segmentp_global_b1_u32 $c1, $s0; // small machine model
segmentp_global_nonull_b1_u32 $c1, $s0; // small machine model
segmentp_group_b1_u64 $c1, $d0; // large machine model

5.17 Segment Conversion Instructions
The segment conversion instructions convert a flat address into a segment address, or a segment address
into a flat address.

See also 5.16. Segment Checking (segmentp) Instruction (previous page).

5.17.1 Syntax

Table 5–23 Syntax for Segment Conversion Instructions

Opcodes and Modifiers Operands
ftos_segment_nonull_destTypedestLength_srcTypesrcLength dest, src

stof_segment_nonull_destTypedestLength_srcTypesrcLength dest, src

Explanation of Modifiers

segment: group or private. See 2.8. Segments (page 31).

nonull: Optional. If present, indicates that the src operand will not be the nullptr address value for the segment.
See the Description below.

destType: u. See Table 4–2 (page 99).

destLength: 32, 64. The size of the destination address. For ftos, must be the address size of segment; for stof,
must be the flat address size. See Table 2–3 (page 40).

srcType: u. See Table 4–2 (page 99).

srcLength: 32, 64. The size of the source address. For ftos, must be the flat address size; for stof, must be the
address size of segment. See Table 2–3 (page 40)).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src: Source to be converted. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.1.16. BRIG Syntax for Segment Conversion Instructions (page 354).

Description

ftos

Converts the flat address specified by src into a segment address and stores the result in the
destination register dest. If src is the flat address nullptr value, then dest is set to the segment
address nullptr value. The destination register size must match the size of the segment address. If
the source is a register, it must match the size of a flat address. See 2.9. Small and Large Machine
Models (page 39).

154 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 155

The global segment is not supported as there is no conversion required from a flat address that
references the global segment and a global segment address since the values are the same. See 2.8.3.
Addressing for Segments (page 35).

If the source is not in the specified segment, the result is undefined. See 2.8.4. Memory Segment Access
Rules (page 36).

If it is known that the src operand can never have the flat address null pointer value, then the nonull
modifier can be specified. On some implementations this might be more efficient. The result is
undefined if the nonull modifier is specified and src is the nullptr value for the flat address. On
some implementations this might result in incorrect values. See 17.10. Segment Address Conversion
(page 296).

stof

Converts the segment address specified by src into a flat address and stores the result in the
destination register dest. The destination register size must match the flat address size. If the source
is a register, it must match the size of the segment address. See 2.9. Small and Large Machine Models
(page 39).

The global segment is not supported as no conversion is required from a global segment address to a
flat address since the values are the same. See 2.8.3. Addressing for Segments (page 35).

If it is known that the src operand can never have the segment address null pointer value, then the
nonull modifier can be specified. On some implementations this might be more efficient. The result is
undefined if the nonull modifier is specified and src is the nullptr value for the segment address.
On some implementations this might result in incorrect values. See 17.10. Segment Address
Conversion (page 296).

Examples
// large machine model conversions
stof_private_u64_u32 $d1, $s1;
stof_private_nonull_u64_u32 $d1, $s1;
ftos_group_u32_u64 $s1, $d2;
ftos_group_nonull_u32_u64 $s1, $d2;

// small machine model conversions
stof_private_u32_u32 $s1, $s2;
stof_private_nonull_u32_u32 $s1, $s2;
ftos_group_u32_u32 $s1, $s2;
ftos_group_nonull_u32_u32 $s1, $s2;

5.18 Compare (cmp) Instruction
The compare (cmp) instruction compares two numeric values. The value written depends on the type of
destination dest.

cmp compares register-sized values, with one exception: for f16 register operands, cmp uses the floating
point value stored in the least significant 16 bits and ignores the most significant 16 bits. See 4.19.1.
Floating-Point Numbers (page 109).

cmp also supports packed operands, returning one result per element.

Floating-point comparison is required to follow IEEE/ANSI Standard 754-2008. See 4.19. Floating Point (page
107).

Chapter 5. Arithmetic Instructions 5.18 Compare (cmp) Instruction

Chapter 5. Arithmetic Instructions 5.18 Compare (cmp) Instruction

If the source operands are floating-point, and one or more of them is a signaling NaN, then an invalid
operation exception must be generated. Additionally, if the instruction is a signaling comparison form and
one or more of the source operands is a quiet NaN, then an invalid operation exception must be generated.
See 12.2. Hardware Exceptions (page 269).

The ftz modifier is supported if the source operand type is floating-point. See 4.19.3. Flush to Zero (ftz)
(page 110).

See Table 5–24 (below) and Table 5–25 (below).

5.18.1 Syntax

Table 5–24 Syntax for Compare (cmp) Instruction

Opcode and Modifiers Operands
cmp_op_ftz_destTypedestLength_srcTypesrcLength dest, src0, src1

Explanation of Modifiers (see Table 4–2 (page 99))

op for bit types: eq and ne.
op for integer source types: eq, ne, lt, le, gt, ge.
op for floating-point source types: eq, ne, lt, le, gt, ge, equ, neu, ltu, leu, gtu, geu, num, nan and signaling NaN
forms seq, sne, slt, sle, sgt, sge, sequ, sneu, sltu, sleu, sgtu, sgeu, snum, snan.

ftz: Only valid for floating-point source types. Required if the Base profile has been specified, otherwise optional. If
specified, subnormal source values are flushed to zero. See 4.19.3. Flush to Zero (ftz) (page 110).

destTypedestLength: Describes the destination.

destType: u, s, f; b if destLength is 1.

destLength: 32, 64; 1 if source type is b; 16 if source type is f. If the Base profile has been specified, 64 is not
supported if destType is f. See 16.2.1. Base Profile Requirements (page 289).

srcTypesrcLength: Describes the two sources.

srcType: b, u, s, f.

srcLength: 32, 64; 1 if source type is b; 16 if source type is f. If the Base profile has been specified, 64 is not
supported if srcType is f. See 16.2.1. Base Profile Requirements (page 289).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src0, src1: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

Signaling NaN floating-point numbers generate the invalid operation exception. The s comparison forms also
generate the invalid operation exception for quiet NaN floating-point numbers.

Table 5–25 Syntax for Packed Version of Compare (cmp) Instruction

Opcode and Modifiers Operands
cmp_op_ftz_pp_uLength_TypeLength dest, src0, src1

Explanation of Modifiers (see 4.13.2. Packed Data Types (page 100))

op: See Explanation of Modifiers table above.

ftz: Only valid for floating-point source types. Required if the Base profile has been specified, otherwise optional. If
specified, subnormal source values are flushed to zero. See 4.19.3. Flush to Zero (ftz) (page 110).

Type: s, u, f.

156 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 157

Explanation of Modifiers (see 4.13.2. Packed Data Types (page 100))

Length: 8x4, 8x8, 8x16, 16x2, 16x4, 16x8, 32x2, 32x4, 64x2. If the Base profile has been specified, 64x2 is not
supported if Type is f. See 16.2.1. Base Profile Requirements (page 289).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register. This instruction performs an element-by-element compare and puts the result in the
destination. dest must be a packed register of equal dimension as the sources. Each element in the packed
destination is written to either all 1's (for true) or all 0's (for false) based on the result of each element-wise compare.

src0, src1: Sources. Must be a packed register or an immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

Signaling NaN floating-point numbers generate the invalid operation exception. The s comparison forms also
generate the invalid operation exception for quiet NaN floating-point numbers.

For BRIG syntax, see 18.7.1.17. BRIG Syntax for Compare (cmp) Instruction (page 354).

Description

The table below shows the value written into the destination dest. For packed types, the value for the
comparison of each element is written into the corresponding element in the destination dest.

Type of dest True False

f16, f32, f64 1.0 0.0

u8 0xff 0x00

u16 0xffff 0x0000

u32, s32 0xffffffff 0x00000000

u64, s64 0xffffffffffffffff 0x0000000000000000

b1 1 0

num

Numeric. Only supported for floating point source operand types. Returns true if both floating-point
source operands are numeric values (not a NaN).

nan

Not A Number. Only supported for floating point source operand types. Returns true if either floating-
point source operand is a NaN.

eq, ne, lt, le, gt, ge

Ordered comparisons. These correspond to equal, not equal, less than, less than or equal, greater than
and greater than or equal respectively. All support both integer and floating point source operand types.
Additionally, eq and ne support the b1 bit source operand type. For floating-point source operands, if
either is a NaN, then the result is false. Otherwise, returns the corresponding comparison performed on
the source operands.

Chapter 5. Arithmetic Instructions 5.18 Compare (cmp) Instruction

Chapter 5. Arithmetic Instructions 5.18 Compare (cmp) Instruction

equ, neu, ltu, leu, gtu, geu

Unordered comparisons. There are unordered forms of all the ordered comparisons. For example, leu
is the unordered form of le. Only supported for floating point source operand types. If either operand is
a NaN, then the result is true. Otherwise, returns the same result as the corresponding ordered
comparison.

seq, sne, slt, sle, sgt, sge, sequ, sneu, sltu, sleu, sgtu, sgeu, snum, snan

Signaling comparisons. There are signaling forms of the ordered, unordered, num and nan
comparisons. For example, sle is the signaling form of le. Only supported for floating point source
operand types. Returns the same result as the corresponding non-signaling comparison, except that the
invalid operation exception must also be generated if either source operand is a quiet NaN.

For the floating point comparisons see Table 5–26 (below):

l The table gives a mapping from the HSAIL floating-point comparisons to the corresponding
IEEE/ANSI Standard 754-2008 four mutually exclusive relations less than (LT), equal (EQ), greater than
(GT) and unordered (UN).

l The HSAIL comparison is true if any of the IEEE/ANSI Standard 754-2008 relations are true.

l The sign of zero is ignored so +0.0 compares equal to -0.0.

l Infinite operands of the same sign compare as equal.

l Every NaN compares unordered with everything, including itself.

l The table also gives the IEEE/ANSI Standard 754-2008 equivalent operation name if available.

Table 5–26 Floating-Point Comparisons

HSAIL IEEE/ANSI Standard 754-2008

Comparison Operation True Relations Operation
num EQ, LT, GT compareQuietOrdered
nan UN compareQuietUnordered
eq EQ compareQuietEqual
ne LT, GT
lt LT compareQuietLess
le EQ, LT compareQuietLessEqual
gt GT compareQuietGreater
ge EQ, GT compareQuietGreaterEqual
equ EQ, UN
neu LT, GT, UN compareQuietNotEqual
ltu LT, UN compareQuietLessUnordered
leu EQ, LT, UN compareQuietNotGreater
gtu GT, UN compareQuietGreaterUnordered
geu EQ, GT, UN compareQuietNotLess
snum EQ, LT, GT
snan UN
seq EQ compareSignalingEqual

158 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 159

HSAIL IEEE/ANSI Standard 754-2008

Comparison Operation True Relations Operation
sne LT, GT
slt LT compareSignalingLess
sle EQ, LT compareSignalingLessEqual
sgt GT compareSignalingGreater
sge EQ, GT compareSignalingGreaterEqual
sequ EQ, UN
sneu LT, GT, UN compareSignalingNotEqual
sltu LT, UN compareSignalingLessUnordered
sleu EQ, LT, UN compareSignalingNotGreater
sgtu GT, UN compareSignalingGreaterUnordered
sgeu EQ, GT, UN compareSignalingNotLess

Examples
cmp_eq_b1_b1 $c1, $c2, 0;
cmp_eq_u32_b1 $s1, $c2, 0;
cmp_eq_s32_b1 $s1, $c2, 1;
cmp_eq_f32_b1 $s1, $c2, 1;

cmp_ne_b1_b1 $c1, $c2, 0;
cmp_ne_u32_b1 $s1, $c2, 0;
cmp_ne_s32_b1 $s1, $c2, 0;
cmp_ne_f32_b1 $s1, $c2, 1;

cmp_lt_b1_u32 $c1, $s2, 0;
cmp_lt_u32_s32 $s1, $s2, 0;
cmp_lt_s32_s32 $s1, $s2, 0;
cmp_lt_f32_f32 $s1, $s2, 0.0f;

cmp_gt_b1_u32 $c1, $s2, 0;
cmp_gt_u32_s32 $s1, $s2, 0;
cmp_gt_s32_s32 $s1, $s2, 0;
cmp_gt_f32_f32 $s1, $s2, 0.0f;

cmp_equ_b1_f32 $c1, $s2, 0.0f;
cmp_equ_b1_f64 $c1, $d1, $d2;

cmp_sltu_b1_f32 $c1, $s2, 0.0f;
cmp_sltu_b1_f64 $c1, $d1, $d2;

cmp_lt_pp_u8x4_u8x4 $s1, $s2, $s3;
cmp_lt_pp_u16x2_f16x2 $s1, $s2, $s3;
cmp_lt_pp_u32x2_f32x2 $d1, $d2, $d3;

5.19 Conversion (cvt) Instruction

5.19.1 Overview

The conversion (cvt) instruction converts a value with a particular type and length to another value with a
different type and/or length.

Conversion instructions specify different types and/or lengths for the destination and the source operands.

Chapter 5. Arithmetic Instructions 5.19 Conversion (cvt) Instruction

Chapter 5. Arithmetic Instructions 5.19 Conversion (cvt) Instruction

The source and destination operands are not allowed to have the same type and length. If the source
operand is an integer type, then the destination type is not allowed to be an integer type with the same size.
Use a mov instruction instead because these cases involve no conversion.

If the source or destination is a floating-point type, the conversion is required to follow IEEE/ANSI Standard
754-2008. See 4.19. Floating Point (page 107).

For register operands:

l If the source or destination operand type is b1 then it must be a c register.

l If the source operand has an integer type less than 32 bits in size, then it must be an s register. In
this case, the least significant source type length bits are used.

l If the destination operand has an integer type less than 32 bits in size, then it must be an s register.
In this case, the conversion operations first transform the source to the destination type. The
converted result is then zero-extended for u types, and sign-extended for s types, to 32 bits.

No packed formats are supported.

Table 5–27 (below) shows how the first step of the conversion instruction does the transformation. The table
uses the notation defined in Table 5–28 (below).

Table 5–27 Conversion Methods

Source
b1

Source
u8

Source
s8

Source
u16

Source
s16

Source
f16

Source
u32

Source
s32

Source
f32

Source
u64

Source
s64

Source
f64

Destination
b1

- ztest ztest ztest ztest ztest ztest ztest ztest ztest ztest ztest

Destination
u8

zext - - chop chop h2u chop chop f2u chop chop d2u

Destination
s8

zext - - chop chop h2s chop chop f2s chop chop d2s

Destination
u16

zext zext sext - - h2u chop chop f2u chop chop d2u

Destination
s16

zext zext sext - - h2s chop chop f2s chop chop d2s

Destination
f16

u2h u2h s2h u2h s2h - u2h s2h f2h u2h s2h d2h

Destination
u32

zext zext sext zext sext h2u - - f2u chop chop d2u

Destination
s32

b2s zext sext zext sext h2s - - f2s chop chop d2s

Destination
f32

u2f u2f s2f u2f s2f h2f u2f s2f - u2f s2f d2f

Destination
u64

zext zext sext zext sext h2u zext sext f2u - - d2u

Destination
s64

b2s zext sext zext sext h2s zext sext f2s - - d2s

Destination
f64

u2d u2d s2d u2d s2d h2d u2d s2d f2d u2d s2d -

Table 5–28 Notation for Conversion Methods

ztest For integer types, 1 if any input bit is 1, 0 if all bits are 0. For floating-point types, 1 if a non-zero number,
NaN, +inf or -inf; 0 if +0.0 or -0.0.

160 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 161

b2s If 0 then all zeros; else all ones.

chop Delete all upper bits till the value fits.

zext Extend the value adding zeros on the left.

sext Extend the value, using sign extension.

f2u Convert 32-bit floating-point to unsigned.

f2h Convert 32-bit floating-point to 16-bit floating-point (half).

f2d Convert 32-bit floating-point to 64-bit floating-point (double).

d2h Convert 64-bit floating-point (double) to 16-bit floating-point (half).

h2f Convert 16-bit floating-point (half) to 32-bit floating-point.

h2u Convert 16-bit floating-point (half) to unsigned.

h2d Convert 16-bit floating-point (half) to 64-bit floating-point (double).

d2u Convert 64-bit floating-point (double) to unsigned.

f2s Convert 32-bit floating-point to signed.

h2s Convert 16-bit floating-point (half) to signed.

d2s Convert 64-bit floating-point (double) to signed.

d2f Convert 64-bit floating-point (double) to 32-bit floating-point.

s2f Convert signed to 32-bit floating-point.

s2h Convert signed to 16-bit floating-point (half).

s2d Convert signed to 64-bit floating-point (double).

u2f Convert unsigned to 32-bit floating-point.

u2h Convert unsigned to 16-bit floating-point (half).

u2d Convert unsigned to 64-bit floating-point (double).

- Not allowed.

5.19.2 Syntax

Table 5–29 Syntax for Conversion (cvt) Instruction

Opcode and Modifiers Operands
cvt_ftz_round_destTypedestLength_srcTypesrcLength dest, src

Explanation of Modifiers (see Table 4–2 (page 99))

ftz: Only valid if srcType is floating-point. Required if the Base profile has been specified, otherwise optional. If
specified, subnormal source values and tiny result values are flushed to zero. See 4.19.3. Flush to Zero (ftz) (page
110).

round: Optional rounding mode. Only valid if destType and/or srcType is floating-point, unless both are floating-
point types and destType size is larger than srcType size. Possible values are up, down, zero, near, upi , downi,
zeroi, neari, upi_sat, downi_sat, zeroi_sat, neari_sat, supi, sdowni, szeroi, sneari, supi_sat, sdowni_sat,
szeroi_sat, and sneari_sat. However, the allowed values depend on the destType, srcType, and whether the
Base profile has been specified. See 4.19.2. Floating-Point Rounding (page 109), 16.2.1. Base Profile Requirements
(page 289), 5.19.3. Rules for Rounding for Conversions (next page), 5.19.4. Description of Integer Rounding Modes
(next page), and 5.19.5. Description of Floating-Point Rounding Modes (page 164).

destType: b, u, s, f.

Chapter 5. Arithmetic Instructions 5.19 Conversion (cvt) Instruction

Chapter 5. Arithmetic Instructions 5.19 Conversion (cvt) Instruction

Explanation of Modifiers (see Table 4–2 (page 99))

destLength: 1, 8, 16, 32, 64. 1 is only allowed for destType of b. 1 and 8 are not allowed for destType of f. If the
Base profile has been specified, 64 is not supported if destType is f. See 16.2.1. Base Profile Requirements (page
289).

srcType: b, u, s, f.

srcLength: 1, 8, 16, 32, 64. 1 is only allowed for srcType of b. 1 and 8 are not allowed for srcType of f. If the Base
profile has been specified, 64 is not supported if srcType is f. See 16.2.1. Base Profile Requirements (page 289).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

src: Source. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

Floating-point exceptions are allowed.

For BRIG syntax, see 18.7.1.18. BRIG Syntax for Conversion (cvt) Instruction (page 354).

5.19.3 Rules for Rounding for Conversions

Rounding for conversions follows the rules shown in Table 5–30 (below).

If the type of rounding is none, then no rounding mode must be specified.

Table 5–30 Rules for Rounding for Conversions

From To Type of rounding Default rounding
f f (smaller

size)
floating-point default rounding mode (specified by the module

header)
f f (larger size) none (must not specify

rounding)
none (no rounding performed)

s or u f floating-point default rounding mode (specified by the module
header)

f s or u integer zeroi

f b1 none (must not specify
rounding)

none (always converts using ztest)

b1 f none (must not specify
rounding)

none (always converts to 0.0 or 1.0)

b1, s, or
u

b1, s, or u none (must not specify
rounding)

none (no rounding performed)

5.19.4 Description of Integer Rounding Modes

Integer rounding modes are used for floating-point to integer conversions. Integer rounding modes are
invalid in all other cases. See Table 5–31 (page 164).

The integer rounding mode can be omitted, in which case it defaults to zeroi. If the Base profile has been
specified, only zeroi, zeroi_sat, szeroi and szeroi_sat are allowed.

If the source operand is a signaling NaN, an invalid operation exception must be generated. See 4.19.4. Not
A Number (NaN) (page 111).

The ftz modifier is supported. See 4.19.3. Flush to Zero (ftz) (page 110).

162 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 163

l There are both regular and saturating integer rounding modes. For example, upi_sat is the
saturating integer rounding mode that corresponds to the upi regular integer rounding mode. They
differ in the way they handle numeric results that are outside the range of the destination integer
type.

l The floating-point source, after any flush to zero, is first rounded to an integral value of infinite
precision according to the rounding mode. This rounded value is considered out of range if it is a
NaN, +inf, −inf, less than the smallest value that can be represented by the destination integer type,
or greater than the largest value that can be represented by the destination integer type.

l There are both non-signaling and signaling forms of the regular and saturating integer rounding
modes. For example, supi is the signaling form of upi. They differ in whether they generate the
inexact exception if the source value, after any flush to zero, is in range but not an integral value. The
non-signaling forms do not generate an inexact exception and correspond to the IEEE/ANSI Standard
754-2008 inexact conversions. The signaling forms do generate an inexact exception and
correspond to the IEEE/ANSI Standard 754-2008 exact conversions. If no exception policy is enabled
for the inexact exception, then both forms behave the same way.

l For the regular integer rounding modes:

o If the rounded value is out of range:

o The result is undefined. An invalid operation exception must be generated.

o If the rounded value is not out of range:

o The result is the rounded value. For the signaling rounding modes, if the source value,
after any flush to zero, is not an integral value, then the inexact exception must be
generated. Otherwise, no exceptions must be generated.

l For the saturating integer rounding modes:

o If the rounded result is a NaN:

o The result is 0. If the source is a signaling NaN then an invalid operation exception
must be generated. Otherwise, no exceptions must generated.

o If the destination integer type is unsigned and the rounded result is −inf or less than 0.0:

o The result is 0. It is implementation defined what, if any, exceptions are generated. A
future version of HSAIL may define what exceptions must be generated.

o If the destination integer type is unsigned and the rounded result is +inf or greater than
2destLength-1:

o The result is 2destLength-1. It is implementation defined what, if any, exceptions are
generated. A future version of HSAIL may define what exceptions must be generated.

o If the destination integer type is signed and the rounded result is −inf or less than -
2destLength-1:

o The result is −2destLength-1. It is implementation defined what, if any, exceptions
are generated. A future version of HSAIL may define what exceptions must be
generated.

Chapter 5. Arithmetic Instructions 5.19 Conversion (cvt) Instruction

Chapter 5. Arithmetic Instructions 5.19 Conversion (cvt) Instruction

o If the destination integer type is signed and the rounded result is +inf or greater than
2destLength-1−1:

o The result is 2destLength-1−1. It is implementation defined what, if any, exceptions
are generated. A future version of HSAIL may define what exceptions must be
generated.

o Otherwise:

o The result is the rounded value. For the signaling rounding modes, if the source value,
after any flush to zero, is not an integral value, then the inexact exception must be
generated. Otherwise, no exceptions must generated.

The regular integer rounding modes might execute faster than the saturating integer rounding modes.

Table 5–31 Integer Rounding Modes

Regular Integer Rounding
Modes

Saturating Integer
Rounding Modes

Regular Integer Rounding Mode Description

Non-Signaling
Form

Signaling
Form

Non-Signaling
Form

Signaling
Form

upi supi upi_sat supi_sat Rounds up to the nearest integer greater than or
equal to the exact result.

downi sdowni downi_sat sdowni_sat Rounds down to the nearest integer less than or
equal to the exact result.

zeroi szeroi zeroi_sat szeroi_sat Rounds to the nearest integer toward zero.
neari sneari neari_sat sneari_sat Rounds to the nearest integer. If there is a tie,

chooses an even integer.

Examples are:

If $s1 has the value 1.6, then:

cvt_upi_s32_f32 $s2, $s1; // sets $s2 = 2
cvt_downi_s32_f32 $s2, $s1; // sets $s2 = 1
cvt_zeroi_s32_f32 $s2, $s1; // sets $s2 = 1
cvt_neari_s32_f32 $s2, $s1; // sets $s2 = 2

If $s1 has the value -1.6, then:

cvt_upi_s32_f32 $s2, $s1; // sets $s2 = -1
cvt_downi_s32_f32 $s2, $s1; // sets $s2 = -2
cvt_zeroi_s32_f32 $s2, $s1; // sets $s2 = -1
cvt_neari_s32_f32 $s2, $s1; // sets $s2 = -2

5.19.5 Description of Floating-Point Rounding Modes

The floating-point rounding modes are (see 4.19.2. Floating-Point Rounding (page 109)):

l up — Rounds up to the nearest representable value that is greater than the infinitely precise result.

l down — Rounds down to the nearest representable value that is less than the infinitely precise
result.

l zero — Rounds to the nearest representable value that is no greater in magnitude than the
infinitely precise result.

164 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 165

l near — Rounds to the nearest representable value. If there is a tie, chooses the one with an even
least significant digit.

Floating-point rounding modes are allowed in the following cases:

l A floating-point rounding mode is allowed for conversions from a floating-point type to a smaller
floating-point type. These conversions can lose precision.

The floating-point rounding mode can be omitted, in which case it defaults to the default floating-
point rounding mode specified by the module header (see Chapter 14. module Header (page 284)). If
the Base profile has been specified, then it must be omitted. See 4.19.2. Floating-Point Rounding
(page 109).

The ftz modifier is supported. See 4.19.3. Flush to Zero (ftz) (page 110).

If the source operand is a NaN, then the result must be a quiet NaN. The NaN payload is not
preserved, because the types are different sizes. It is implementation defined if the sign is
preserved. If a signaling NaN, then an invalid operation exception must be generated. See 4.19.4.
Not A Number (NaN) (page 111).

Otherwise, the infinitely precise source value, after any flush to zero, is rounded to the destination
type and stored in the destination operand. The exceptions generated include those produced by
rounding. See 4.19.2. Floating-Point Rounding (page 109).

l A floating-point rounding mode is allowed for integer to floating-point conversions.

The floating-point rounding mode can be omitted, in which case it defaults to the default floating-
point rounding mode specified by the module header (see Chapter 14. module Header (page 284)) If
the Base profile has been specified, then it must be omitted.. See 4.19.2. Floating-Point Rounding
(page 109).

The ftz modifier is not supported. See 4.19.3. Flush to Zero (ftz) (page 110).

Otherwise, the infinitely precise source value is rounded to the destination type and stored in the
destination operand. The exceptions generated include those produced by rounding. See 4.19.2.
Floating-Point Rounding (page 109).

Floating-point rounding modes are invalid in all other cases.

Examples
cvt_f32_f64 $s1, $d1;
cvt_upi_u32_f32 $s1, $s2;
cvt_u32_f32 $s1, $s2;
cvt_f16_f32 $s1, $s2;
cvt_s32_u8 $s1, $s2;
cvt_s32_b1 $s1, $c2;
cvt_f32_f16 $s1, $s2;
cvt_s32_f32 $s1, $s2;
cvt_ftz_upi_sat_s8_f32 $s1, $s2;

Chapter 5. Arithmetic Instructions 5.19 Conversion (cvt) Instruction

Chapter 6. Memory Instructions 6.1 Memory and Addressing

CHAPTER 6.
Memory Instructions

This chapter describes the HSAIL memory instructions.

6.1 Memory and Addressing
Memory instructions transfer data between registers and memory and can define memory synchronization
between work-items and other agents:

l The ordinary load and atomic load instructions move contents from memory to a register.

l The ordinary store and atomic store instructions move contents of a register into memory.

l The atomic read-modify-write memory instructions update the contents of a memory location based
on the original value of the memory location and the value in a register. Most read-modify-write
instructions have two forms: one that returns the original value of the memory location into a
register; and one that does not return a value and so has no destination operand.

l The memory fence instruction defines the memory synchronization between work-items and other
agents.

A flat memory, global segment, readonly segment, or kernarg segment address is a 32- or 64-bit value,
depending on the machine model. A group segment, private segment, spill segment, or arg segment
address is always 32 bits regardless of machine model. See 2.9. Small and Large Machine Models (page
39)). Each instruction indicates the type of address.

Memory instructions can do either of the following:

l Specify the particular segment used, in which case the address is relative to the start of the segment.

l Use flat addresses, in which case hardware will recognize when an address is within a particular
segment.

See 2.8.3. Addressing for Segments (page 35).

6.1.1 How Addresses Are Formed

The format of an address expression is described in 4.18. Address Expressions (page 106).

Every address expression has one or both of the following:

l Name in square brackets.

If the instruction uses segment addressing, the name is converted to the corresponding segment
address. The behavior is undefined if the name is not in the same segment specified in the memory
instruction.

166 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 167

l Register plus or minus an offset in square brackets.

Either the register or the offset can be optional. The size of the register must match the size of the
address required by the instruction. For example, an s register must be used for a group segment
address, a d register must be used for a global segment address in the large machine model, and an
s register must be used for a global address in the small machine model. See Table 2–3 (page 40).

An address is formed from an address expression as follows:

1. Start with address 0.

2. If there is an identifier, add the byte offset of the variable referred to by the identifier within its
segment to the address. The segment of the variable must be the same as the segment specified in
the instruction using the address.

3. If there is a register, add the value of the register to the address.

4. If there is an offset, add or subtract the offset. The offset is read as a 64-bit integer constant. See
4.8.1. Integer Constants (page 82).

All address arithmetic is done using unsigned two's complement arithmetic truncated to the size of the
address.

The address formed is then translated to an effective address to determine which memory location is
accessed. See 2.8.3. Addressing for Segments (page 35).

If the resulting effective address value is outside the memory segment specified by the instruction, or is a
flat address that is outside any segment, the result of the memory segment instruction is undefined.

For more information, see 4.18. Address Expressions (page 106).

6.1.2 Memory Hierarchy

Figure 6–1 (next page) shows an example of the memory used by an agent executing a kernel dispatch grid.

The addresses used to access memory do not need to be naturally aligned to a multiple of the access size.

The segment converting instructions (ftos and stof) convert addresses between flat address and
segment address.

The segment checking instruction (segmentp) can be used to check which segment contains a particular
flat address.

The readonly, kernarg, spill and arg segments are not part of the flat address space.

Chapter 6. Memory Instructions 6.1 Memory and Addressing

Chapter 6. Memory Instructions 6.1 Memory and Addressing

Figure 6–1 Memory Hierarchy

6.1.3 Alignment

A memory instruction of size n bytes is “naturally aligned” if and only if its address is an integer multiple of
n. For example, naturally aligned 8-byte stores can only be to addresses 0, 8, 16, 24, 32, and so forth.

HSAIL implementations can perform certain memory instructions as a series of steps.

For example, an unaligned store might be implemented as a series of aligned stores, as follows: A load
(store) is naturally aligned if the address is a multiple of the amount of data loaded (stored). Thus, storing
four bytes at address 3 is not naturally aligned. Under certain conditions, implementations could split this up
into four separate 1-byte stores.

6.1.4 Equivalence Classes

Equivalence classes can be used to provide aliasing information to the finalizer.

Equivalence classes are specified with the memory and image instructions.

There are 256 equivalence classes.

Class 0, the default, is general memory. It can interact with all other classes.

168 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 169

The finalizer will assume that any two memory instructions in different classes N > 0 and M > 0 (with N not
equal to M) do not overlap and can be reordered. Equivalence classes in different segments never overlap.

For example, memory specified by the ld or st instructions as class 1 can only interact with class 1 and
class 0 memory.

Memory specified as class 2 can only interact with class 2 and class 0 memory.

Memory specified as class 3 can only interact with class 3 and class 0 memory. And so on.

6.2 Memory Model
This section maps the HSAIL instructions and modifiers to the HSA Memory Model defined in the HSA
Platform System Architecture Specification Version 1.0 Chapter 3 HSA Memory Consistency Model.

Memory instructions are the load, store, atomic, signal, and memory fence instructions defined in this
chapter. Read, write, and fence image instructions are the rdimage, ldimage, stimage, and
imagefence instructions defined in Chapter 7. Image Instructions (page 194) which use a separate image
memory model defined in 7.1.10. Image Memory Model (page 218).

6.2.1 Memory Order

The memory synchronization of an instruction is specified by the memory order modifier which can have the
following values which correspond to the memory orders with the same names defined in the HSA Platform
System Architecture Specification Chapter 3 HSA Memory Consistency Model:

l scacq specifies the instruction is a sequentially consistent acquire memory instruction.

l screl specifies the instruction is a sequentially consistent release memory instruction.

l scar specifies the instruction is both a sequentially consistent acquire and sequentially consistent
release memory instruction.

l rlx specifies the instruction is a relaxed memory instruction.

The memory model requires that every work-item and agent thread observes the same total ordering of
synchronizing memory instructions for a data race free program. Therefore, if sequential consistency is
required on synchronizing memory instructions, it is only necessary to ensure that the relaxed atomic
memory instructions executed by a work-item are ordered with respect to the acquire and release atomic
memory instructions executed by the same work-item. This can be achieved by:

l using scar on read-modify-write atomic memory instructions,

l preceding a load acquire atomic memory instruction with a release memory fence,

l and following a store release atomic memory instruction with an acquire memory fence.

One common use of acquire and release memory ordering is to implement a lock for synchronization. In this
case, no memory instructions in a critical section bracketed by the acquire and release memory instructions
can be moved out of the section. An acquire access of a global variable ensures that the subsequent
memory instructions in the critical section will read values no older than the value loaded. The update
release of a global variable at the end of the critical section will ensure that all the memory updates done in
the critical section have been made visible before the value of that variable is made visible. The global
variables can therefore be used to control entry of the critical section, and to communicate that the critical
section has completed updating memory.

Chapter 6. Memory Instructions 6.2 Memory Model

Chapter 6. Memory Instructions 6.2 Memory Model

6.2.2 Memory Scope

The scope of an atomic memory instruction or memory fence is specified by the memory scope modifier
which can have the following values which correspond to the memory scopes with the same names defined
in the HSA Platform System Architecture Specification Version 1.0 Chapter 3 HSA Memory Consistency Model:

l wi specifies work-item scope which includes only the executing work-item. Only supported by the
image fence instruction on the image segment. See 7.6. Image Fence (imagefence) Instruction (page
225).

l wave specifies wavefront scope which includes all work-items in the same wavefront as the
executing work-item.

l wg specifies work-group scope which includes all work-items in the same work-group as the
executing work-item.

l agent specifies kernel agent scope which includes all work-items on the same kernel agent
executing kernel dispatches for the same application process as the executing work-item. Only
supported for the global segment.

l system specifies the entire HSA system scope which includes all work-items on all kernel agents
executing kernel dispatches for the same application process, together with all agents executing the
same application process as the executing work-item. Only supported for the global segment.

An implementation may only support system scope on certain ranges of virtual addresses. If a
memory instruction with system scope is performed on a location with a virtual address in a range
that does not support system scope, then the memory instruction behaves as if agent scope was
specified.

The Base profile requires that the HSA runtime is used to allocate all memory that is required to
support system scope (see 16.2.1. Base Profile Requirements (page 289)).

See 6.2.6. Course Grain Allocation (page 172) for additional restrictions on the global segment

A narrower memory scope is appropriate when work-items will write to global segment memory, and other
work-items will read back those values, but all communication will only happen between members of the
narrower scope. Using a narrower memory scope might be more efficient on some implementations than a
wider memory scope.

For example, the amount of data the work-items within a work-group are exchanging might be too large to
fit into the group segment. In this case, they could use the global segment, and wg memory scope, because
the data is only being shared by work-items in the same work-group. In implementations that share an L1
cache over a work-group, the use of wg memory scope might allow an implementation to reduce memory
traffic and so would be more efficient than using a wider memory scope. However, note that the work-items
of different work-groups must access different global memory locations otherwise it is a data race. This is
because the updates of one work-group are ordinary updates to another work-group since they are not both
members of the same wg scope.

6.2.3 Memory Synchronization Segments

The segment of an atomic memory instruction is specified by the segment modifier of the instruction and
can have the following values:

l group specifies the group segment.

l global specifies the global segment.

170 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 171

l image specifies the image segment. It includes all the memory that holds image data, and is
implicitly used by the image instructions. It is only supported if the "IMAGE" extension directive has
been specified (see 13.1.2. extension IMAGE (page 274)).

If the memory segment is omitted for an atomic or ordinary memory instruction, it specifies that a flat
memory address is being used. See 6.2.9. Flat Addresses (page 173).

A synchronizing memory instruction and memory fence affects memory operations to both the group and
global segments regardless of the segment specified by the instruction.

See 2.8. Segments (page 31).

6.2.4 Non-Memory Synchronization Segments

This section specifies the memory model rules for memory accesses to segments that are not memory
synchronization segments (see 6.2.3. Memory Synchronization Segments (previous page)). Only ordinary
memory instructions are supported for these segments.

The private, spill, and arg segments can only be accessed by a single work-item.

The kernarg segment values are initialized and made visible before a kernel dispatch starts executing,
and their values cannot be changed during the execution of the kernel dispatch. Only load instructions are
allowed. The behavior is undefined if the locations are accessed other than by work-items that belong to the
kernel dispatch.

readonly segment locations have agent allocation (see 6.2.5. Agent Allocation (below)) and the behavior
is undefined if the locations accessed by a kernel dispatch change value during its execution. Only load
instructions are allowed. The values can only be changed by the host CPU agent using the HSA runtime
operations, which makes the values visible to all subsequent kernel dispatch executions on the associated
kernel agent. See 4.10. Variable Initializers (page 94).

See 2.8. Segments (page 31).

6.2.5 Agent Allocation

A segment variable with agent allocation results in distinct allocations of the variable for each kernel agent,
each with a distinct segment address. If a location is accessed that is part of an agent allocation except from
the kernel agent that the allocation is associated, or by using the HSA runtime copy operation, the results
are undefined.

The global segment allows variables to have agent allocation. See 4.3.10. Declaration and Definition
Qualifiers (page 69). The HSA runtime memory allocator can be used to allocate global segment agent
allocation memory by specifying a memory topology region that supports agent allocation for the required
agent. The results are undefined if the returned address range is accessed except as a global segment
address on the specified agent, or as the argument to the HSA runtime copy operation.

All readonly segment variables have agent allocation. The HSA runtime memory allocator can be used to
allocate readonly segment memory by specifying a memory topology region that supports the readonly
segment for the required agent. The results are undefined if the returned address range is accessed except
as a readonly segment address on the specified agent, or as the argument to the HSA runtime copy
operation.

An implementation may use memory that does not support system scope to allocate variables with agent
allocation (see 6.2.2. Memory Scope (previous page)).

Chapter 6. Memory Instructions 6.2 Memory Model

Chapter 6. Memory Instructions 6.2 Memory Model

6.2.6 Course Grain Allocation

The HSA runtime can be used to allocate a range of virtual addresses that have coarse grain
synchronization. Such virtual address ranges are termed coarse grain allocations.

A course grain allocation does not support system scope (see 6.2.2. Memory Scope (page 170)).

The HSA runtime can be used to specify ownership of coarse grain allocations. Only one agent can have
ownership of a coarse grain allocation at any one time. The ownership can either be read-only or read-write.

A program is undefined if an agent:

l reads from a coarse grain allocation when it does not have read-only or read-write ownership

l writes to a coarse grain allocation when it does not have read-write ownership

6.2.7 Kernel Dispatch Memory Synchronization

Before a work-item starts executing, no implicit acquire memory fence is performed.

When a work-item completes execution, no implicit release memory fence is performed.

However, packet processor fences can be used to affect the work-items of kernel dispatch packets:

l An acquire packet fence can be used to perform an acquire that affects all work-items of kernel
dispatch packets on any User Mode Queue of the same agent that have not yet entered the active
phase.

l A release packet fence can be used to perform a release that affects all work-items of kernel
dispatch packets on any User Mode Queue of the same agent that have completed the active phase.

The packet processor fences apply to the global and image segments, and can specify either agent or
system scope.

Packet processor fences can be used with any packet. Note that packet processor fences do not just apply to
the packet to which they belong.

For more information on the packet processor fence memory model, see the HSA Platform System
Architecture Specification Version 1.0: section 2.9.1 Packet Header for the definition of when the packet fences
are performed for each packet kind; section 2.9.2 Packet Process Flow for more details on the processing of
the different packets; and section 3.4 Packet Processor Fences.

Because global memory update instructions of a kernel can be made visible by the release fence of the
dispatch packet that executes it, or by some future packet executed on the same kernel agent, an
implementation (both hardware and finalizer) cannot delete the update of the final value of global memory
locations by the ordinary memory instructions of a work-item, even if it can prove it cannot be accessed by
any work-item in the kernel dispatch. For example, using ordinary memory instructions , or atomic memory
instructions with a memory scope of work-group or wavefront, does not give an implementation permission
to delete a global memory update instruction even if it can determine that no work-item in the work-group
or wavefront will access the changed location.

172 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 173

To avoid a data race, a memory location updated by an ordinary memory instruction, or an atomic memory
instruction at a scope less than system, must be made visible by a release to system scope before it can
be re-allocated by the runtime for use as a system global variable. Consider that an implementation is
allowed to make such values accessible to other work-items and agents at any time between the memory
instruction and a release at system scope. Similarly for locations used for kernel agent only coherent
variables being released to agent and system scopes.

6.2.8 Execution Barrier

A barrier instruction is used to synchronize the execution of the work-items that participate in an associated
execution barrier instance. In addition, an execution barrier instruction defines a memory ordering of
synchronizing memory instructions executed by work-items participating in the execution barrier instance
with respect to the synchronizing memory instructions executed by the other work-items participating in the
same execution barrier instance. See 9.3. Execution Barrier (page 238).

6.2.9 Flat Addresses

Synchronizing memory Instructions that use a flat address are defined as the equivalent segment address
synchronizing memory Instruction using:

l A segment and segment address corresponding to the actual flat address when the flat
synchronizing memory Instruction is executed at runtime.

l A memory scope that is the minimum of the memory scope specified by the flat synchronizing
memory Instruction and the widest scope supported by the segment of the actual flat address when
the flat synchronizing memory Instruction is executed at runtime.

l A memory order corresponding to that specified by the flat synchronizing memory Instruction.

6.3 Load (ld) Instruction
The load (ld) instruction loads from memory using a segment or flat address expression (see 4.18. Address
Expressions (page 106)) and places the result into one or more registers. It is an ordinary non-synchronizing
memory instruction (see 6.2. Memory Model (page 169)).

There are four variants of the ld instruction, depending on the number of destinations: one, two, three, or
four.

The size of the value loaded is specified by the instruction's compound type. The value is stored into the
destination register following the rules in 4.16. Operands (page 104). Integer values are sign-extended or
zero-extended to fit the destination register size. f16 values are stored in the least significant 16 bits of the
s register, and the most significant 16 bits are undefined (see 4.19.1. Floating-Point Numbers (page 109)).
No conversions are performed on other types. Use an explicit cvt instruction if floating-point conversion is
required.

If the Base profile has been specified then the 64-bit floating-point type (f64) is not supported (see 16.2.1.
Base Profile Requirements (page 289)).

6.3.1 Syntax

Chapter 6. Memory Instructions 6.3 Load (ld) Instruction

Chapter 6. Memory Instructions 6.3 Load (ld) Instruction

Table 6–1 Syntax for Load (ld) Instruction

Opcode and Modifiers Operands
ld_segment_align(n)_const_equiv(n)_width_TypeLength dest0, address

ld_v2_segment_align(n)_const_equiv(n)_width_TypeLength (dest0,dest1), address

ld_v3_segment_align(n)_const_equiv(n)_width_TypeLength (dest0,dest1,dest2), address

ld_v4_segment_align(n)_const_equiv(n)_width_TypeLength (dest0,dest1,dest2,dest3), address

Explanation of Modifiers

v2, v3, and v4: Optional vector element count. Used to specify that multiple contiguous memory locations, each of
type TypeLength, are being loaded. See the Description below.

segment: Optional segment: global, group, private, kernarg, readonly, spill, or arg. If omitted, a flat address is
used. See 2.8. Segments (page 31).

align(n): Optional. Used to specify the byte alignment of the base of the memory being loaded. If omitted, 1 is
used indicating no alignment. See the Description below.

const: Optional. Used to indicate if the memory loaded is constant. Only allowed if segment specifies the global
segment or flat address. See the Description below.

equiv(n): Optional: n is an equivalence class. Used to specify the equivalence class of the memory locations being
accessed. If omitted, class 0 is used, which indicates that any memory location may be aliased. See 6.1.4.
Equivalence Classes (page 168).

width: Optional: width(n), width(WAVESIZE), or width(all). Used to specify the result uniformity of the loaded
values. All active work-items in the same slice are guaranteed to load the same value(s). If the width modifier is
omitted, it defaults to width(1), indicating each active work-item can load different value(s). See the Description
below.

Type: u, s, f. The Type specifies how the value is expanded to the size of the destination. See Table 4–2 (page 99).

Length: 8, 16, 32, 64. If the Base profile has been specified, 64 is not supported if Type is f. The Length specifies
the amount of data fetched from memory, and the amount to increment the address when the destination is a
vector operand. See Table 4–2 (page 99) and 16.2.1. Base Profile Requirements (page 289).

TypeLength can also be b128, in which case destn must be a q register; or roimg, woimg, rwimg, samp, sig32, or
sig64, in which case destn must be a d register.

Explanation of Operands (see 4.16. Operands (page 104))

dest0, dest1, dest2, dest3: Destination registers.

address: Address to be loaded from. Must be an address expression for an address in segment (see 4.18. Address
Expressions (page 106)).

Exceptions (see Chapter 12. Exceptions (page 269))

Invalid address exceptions are allowed. May generate a memory exception if address is unaligned and the aligned

modifier has been specified.

For BRIG syntax, see 18.7.2. BRIG Syntax for Memory Instructions (page 354).

6.3.2 Description

v2, v3, and v4

When v2, v3, or v4 is used, HSAIL will load consecutive values into multiple registers. The address is
incremented by the size of the TypeLength specified by the instruction.

174 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 175

Front ends should generate vector forms whenever possible. The following forms are equivalent but the
vector form is often faster.

Slow form:

ld_s32 $s0, [$s1];
ld_s32 $s1, [$s1+4];

Fast form using the vector:

ld_v2_s32 ($s0,$s1), [$s1];

align(n)

If specified, indicates that the implementation can rely on the address operand having an address
that is an integer multiple of n. Valid values of n are 1, 2, 4, 8, 16, 32, 64, 128 and 256. On some
implementations, this may allow the load to be performed more efficiently. The behavior is undefined if
a memory load marked as aligned is in fact not aligned to the specified n: on some implementations this
might result in incorrect values being loaded or memory exceptions being generated. If align is
omitted, the value 1 is used for n, and the implementation must correctly handle the source address
being unaligned. Note, for v2, v3, and v4 only the alignment of the first value is specified: the
subsequent values are still loaded contiguously according to the size of TypeLength. See 17.8.
Unaligned Access (page 295).

const

If specified, indicates that the load is accessing constant memory. An implementation can rely on the
memory locations loaded not being written to for the lifetime of the variable in the program. Only global
and readonly segment loads, and flat addresses that refer to constant global segment memory, can be
marked const.

NOTE: Although the values loaded by kernarg and non-const readonly segment do not change during
the execution of a single kernel dispatch, the values can be different for each kernel dispatch.
Therefore, they are not considered constant memory accesses.

On some implementations, knowing a load is accessing constant memory might be more efficient. The
behavior is undefined if a memory load marked as constant is changed during the execution of any
kernels that are part of the program: on some implementations this might result in incorrect values
being loaded. See 17.9. Constant Access (page 295).

width

Because work-items are executed in wavefronts, a single load can access multiple memory locations if
the address operand evaluates to different addresses in different work-items. The optional width
modifier specifies the result uniformity of the loaded value (see 2.12. Divergent Control Flow (page 41)).
It can be width(n), width(WAVESIZE), or width(all). All active work-items in the same slice
are guaranteed to load the same result. If the width modifier is omitted, it defaults to width(1),
indicating each active work-item can load different values.

In the case of v2, v3, and v4, each work-item produces multiple results. The loads of the work-items in
a slice are only result uniform if each corresponding result is the same.

Note that a load instruction is considered result uniform if the result(s) of all active work-items in the
slice are the same, regardless of whether the address operand evaluates to the same addresses in
each of the work-items.

Chapter 6. Memory Instructions 6.3 Load (ld) Instruction

Chapter 6. Memory Instructions 6.3 Load (ld) Instruction

If active work-items specified by the width modifier do not load the same values, the behavior is
undefined.

Implementations are allowed to have a single active work-item read the value and then broadcast the
result to the other active work-items. Some implementations can use this modifier to speed up
computations.

6.3.3 Additional Information

If segment is present, the address expression must be a segment address of the same kind. If segment is
omitted, the address expression must be a flat address. See 6.1.1. How Addresses Are Formed (page 166).

It is not valid to use a flat load instruction with an identifier. The following code is not valid:

ld_s64 $d1, [&g]; // not valid because address expression is a segment
// address, but a flat address is required.

If ld_v2, ld_v3, or ld_v4 is used, then all the registers must be the same size.

Subword integer type values (s8, u8, s16 and u16) are extended to fill the destination s register. s types
are sign-extended, u types are zero-extended. Rules for this are:

l ld_s8 — Loads a value between -128 and 127 inclusive into the destination register.

l ld_u8 — Loads a value between 0 and 255 inclusive into the destination register.

l ld_s16 — Loads a value between -32768 and 32767 into the destination register.

l ld_u16 — Loads a value between 0 and 65535 inclusive into the destination register.

For example, ld_u8 $s2, $d0 loads one byte and zero-extends to 32 bits.

For other integer types, the size of the source and destination must match, and so ld_s and ld_u
instructions result in identical results, because no sign extension or zero extension is required. A front-end
compiler should use ld_s when the sign is relevant and ld_u when it is not. Then readers of the program
can better understand the significance of what is being loaded.

For f32 and f64, the size of the source and destination must match. If a conversion is required, then it
should be done explicitly using a cvt instruction.

For f16, the destination must be an s register. The value is loaded into the least significant 16 bits of the s
register, and the most significant 16 bits are undefined. If a conversion is required, then it should be done
explicitly using a cvt instruction. See 4.19.1. Floating-Point Numbers (page 109).

For roimg, woimg, rwimg, samp, sig32, or sig64 value types, it is required that the compound type
specified on the load must match the value type (see 7.1.9. Using Image Instructions (page 216) and 6.8.
Notification (signal) Instructions (page 187)).

The ld instruction is an ordinary non-synchronizing memory instruction. It can be reordered by either the
finalizer or hardware, and can cause data races. Load reordering and data races can be prevented by using
synchronizing memory instructions or memory fences in conjunction with relaxed atomic memory
instructions. For example, a atomic_ld_acq acts like a partial fence; no memory instruction after the
atomic_ld_acq can be moved before the atomic_ld_acq. See 6.2. Memory Model (page 169).

Examples
ld_global_f32 $s1, [&x];
ld_global_s32 $s1, [&x];

176 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 177

ld_global_f16 $s1, [&x];
ld_global_f64 $d1, [&x];
ld_global_align(8)_f64 $d1, [&x];
ld_global_width(WAVESIZE)_f16 $s1, [&x];
ld_global_align(2)_const_width(all)_f16 $s1, [&x];
ld_arg_equiv(2)_f32 $s1, [%y];
ld_private_f32 $s1, [$s3+4];
ld_spill_f32 $s1, [$s3+4];
ld_f32 $s1, [$s3+4];
ld_align(16)_f32 $s1, [$s3+4];
ld_v3_s32 ($s1,$s2,$s6), [$s3+4];
ld_v4_f32 ($s1,$s3,$s6,$s2), [$s3+4];
ld_v2_equiv(9)_f32 ($s1,$s2), [$s3+4];
ld_group_equiv(0)_u32 $s0, [$s2];
ld_equiv(1)_u64 $d3, [$s4+32];
ld_v2_equiv(1)_u64 ($d1,$d2), [$s0+32];
ld_v4_width(8)_f32 ($s1,$s3,$s6,$s2), [$s3+4];
ld_equiv(1)_u64 $d6, [128];
ld_v2_equiv(9)_width(4)_f32 ($s1,$s2), [$s3+4];
ld_width(64)_u32 $s0, [$s2];
ld_equiv(1)_width(1024)_u64 $d6, [128];
ld_equiv(1)_width(all)_u64 $d6, [128];
ld_global_rwimg $d1, [&rwimage1];
ld_readonly_roimg $d2, [&roimage1];
ld_global_woimg $d2, [&woimage1];
ld_kernarg_samp $d3, [%sampler1];
ld_global_sig32 $d3, [&signal32];
ld_global_sig64 $d3, [&signal64];

6.4 Store (st) Instruction
The store (st) instruction stores a value from one or more registers, or an immediate value, (see 4.16.
Operands (page 104)) into memory using a segment or flat address expression (see 4.18. Address
Expressions (page 106)). It is an ordinary non-synchronizing memory instruction (see 6.2. Memory Model
(page 169)).

There are four variants of the store instruction, depending on the number of sources: one, two, three, or
four.

If the Base profile has been specified then the 64-bit floating-point type (f64) is not supported (see 16.2.1.
Base Profile Requirements (page 289)).

6.4.1 Syntax

Table 6–2 Syntax for Store (st) Instruction

Opcode and Modifiers Operands
st_segment_align(n)_equiv(n)_TypeLength src0, address

st_v2_segment_align(n)_equiv(n)_TypeLength (src0,src1), address

st_v3_segment_align(n)_equiv(n)_TypeLength (src0,src1,src2), address

st_v4_segment_align(n)_equiv(n)_TypeLength (src0,src1,src2,src3), address

Explanation of Modifiers

v2, v3, and v4: Optional vector element count. Used to specify that multiple contiguous memory locations, each of
type TypeLength, are being stored. See the Description below.

segment: Optional segment: global, group, private, spill, or arg. If omitted, flat is used. See 2.8. Segments (page
31).

Chapter 6. Memory Instructions 6.4 Store (st) Instruction

Chapter 6. Memory Instructions 6.4 Store (st) Instruction

Explanation of Modifiers

align(n): Optional. Used to specify the byte alignment of the base of the memory being stored. If omitted, 1 is
used indicating no alignment. See the Description below.

equiv(n): Optional: n is an equivalence class. Used to specify the equivalence class of the memory locations being
accessed. If omitted, class 0 is used, which indicates that any memory location may be aliased. See 6.1.4.
Equivalence Classes (page 168).

Type: u, s, f. The Type specifies how the value is extracted from the source to match the size of the destination. See
Table 4–2 (page 99).

Length: 8, 16, 32, 64. If the Base profile has been specified, 64 is not supported if Type is f. The Length specifies
the amount of data stored, and the amount to increment the address when the destination is a vector operand.
See Table 4–2 (page 99) and 16.2.1. Base Profile Requirements (page 289).

TypeLength can also be b128, in which case srcn must be a q register; or roimg, woimg, rwimg, samp, sig32, or
sig64, in which case srcn must be a d register. If roimg, woimg, rwimg or samp then segment must be arg.

Explanation of Operands (see 4.16. Operands (page 104))

src0, src1, src2, src3: Sources. Can be a register or immediate value.

address: Address to be stored into. Must be an address expression for an address in segment (see 4.18. Address
Expressions (page 106)).

Exceptions (see Chapter 12. Exceptions (page 269))

Invalid address exceptions are allowed. May generate a memory exception if address is unaligned and the aligned

modifier has been specified.

For BRIG syntax, see 18.7.2. BRIG Syntax for Memory Instructions (page 354).

6.4.2 Description

v2, v3, and v4

When v2, v3, or v4 is used, HSAIL will store consecutive values from multiple registers or immediate
values. The address is incremented by the size of the TypeLength specified the instruction.

Front ends should generate vector forms whenever possible. The following forms are equivalent but the
vector form is often faster.

Slow form:

st_s32 $s0, [$s2];
st_s32 $s1, [$s2+4];

Fast form using the vector:

st_v2_s32 ($s0, $s1), [$s2];

For example, this code:

st_v4_u8 ($s1, $s2, $s3, $s4), [120];

does the following:

l Stores the lower 8 bits of $s1 into address 120.

l Stores the lower 8 bits of $s2 into address 121.

l Stores the lower 8 bits of $s3 into address 122.

l Stores the lower 8 bits of $s4 into address 123.

178 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 179

On certain hardware implementations, it is faster to write 64 or 128 bits in a single operation.

align(n)

If specified, indicates that the implementation can rely on the address operand having an address
that is an integer multiple of n. Valid values of n are 1, 2, 4, 8, 16, 32, 64, 128 and 256. On some
implementations, this may allow the store to be performed more efficiently. The results are undefined if
a memory store marked as aligned is in fact not aligned to the specified n: on some implementations
this might result in incorrect values being stored, values in other memory locations being modified or
memory exceptions being generated. If align is omitted, the value 1 is used for n, and the
implementation must correctly handle the source address being unaligned. Note, for v2, v3, and v4
only the alignment of the first value is specified: the subsequent values are still stored contiguously
according to the size of TypeLength. See 17.8. Unaligned Access (page 295).

6.4.3 Additional Information

If segment is present, the address expression must be a segment address of the same kind. If segment is
omitted, the address expression must be a flat address. See 6.1.1. How Addresses Are Formed (page 166).

It is not valid to use a flat store instruction with an identifier. The following code is not valid:

st_b64 $s1, [&g]; // not valid because address expression is a segment
// address, but a flat address is required.

If st_v2, st_v3, or st_v4 is used, then all the registers must be the same size.

Subword integer type values (s8, u8, s16 and u16) are extracted from the least significant bits of the
source s register. For example, storing a 256 with a st_s8 writes a zero (least significant 8 bits) into
memory. For other integer types, the size of the source and destination must match.

For f32 and f64, the size of the source and destination must match. If a conversion is required, then it
should be done explicitly using a cvt instruction.

For f16, if the source is a register, it must be an s register and the least significant 16 bits are stored. See
4.19.1. Floating-Point Numbers (page 109).

For roimg, woimg, rwimg, samp, sig32, or sig64 value types, it is required that the compound type
specified on the store must match the value type (see 7.1.9. Using Image Instructions (page 216) and 6.8.
Notification (signal) Instructions (page 187)).

The roimg, woimg, rwimg and samp value types are only allowed if segment is arg (see 7.1.7. Image
Creation and Image Handles (page 211) and 7.1.8. Sampler Creation and Sampler Handles (page 214)).

The st instruction is an ordinary non-synchronizing memory instruction. It can be reordered by either the
finalizer or hardware, and can cause data races. Store reordering and data races can be prevented by using
synchronizing memory instructions or memory fences in conjunction with synchronizing memory
instructions. For example, a atomic_st_rel acts like a partial fence; no memory instruction before the
atomic_st_rel can be moved after the atomic_st_rel. See 6.2. Memory Model (page 169).

Examples
st_global_f32 $s1, [&x];
st_global_align(4)_f32 $s1, [&x];
st_global_u8 $s1, [&x];
st_global_u16 $s1, [&x];
st_global_u32 $s1, [&x];

Chapter 6. Memory Instructions 6.4 Store (st) Instruction

Chapter 6. Memory Instructions 6.5 Atomic Memory Instructions

st_global_u32 200, [&x];
st_global_u32 WAVESIZE, [&x];
st_global_f16 $s1, [&x];
st_global_f64 $d1, [&x];
st_global_align(8)_f64 $d1, [&x];
st_private_f32 $s1, [$s3+4];
st_global_f32 $s1, [$s3+4];
st_spill_f32 $s1, [$s3+4];
st_arg_f32 $s1, [$s3+4];
st_f32 $s1, [$s3+4];
st_align(4)_f32 $s1, [$s3+4];
st_v4_f32 ($s1,$s1,$s6,$s2), [$s3+4];
st_v2_align(8)_equiv(9)_f32 ($s1,$s2), [$s3+4];
st_v3_s32 ($s1,$s1,$s6), [$s3+4];
st_group_equiv(0)_u32 $s0, [$s2];
st_equiv(1)_u64 $d3, [$s4+32];
st_align(16)_equiv(1)_u64 $d3, [$s4+32];
st_v2_equiv(1)_u64 ($d1,$d2), [$s0+32];
st_equiv(1)_u64 $d6, [128];
st_arg_roimg $d2, [%roimage2];
st_arg_rwimg $d1, [%rwimage2];
st_arg_woimg $d2, [%woimage2];
st_arg_samp $d3, [%sampler2];
st_global_sig32 $d3, [&signal32];
st_global_sig64 $d3, [&signal64];

6.5 Atomic Memory Instructions
Atomic memory instructions are executed atomically such that it is not possible for any work-item or agent
in the system to observe or modify the memory location at the same memory scope during the atomic
sequence.

It is guaranteed that when a work-item issues an atomic read-modify-write memory instruction on a
memory location, no write to the same memory location using the same memory scope from outside the
current atomic instruction by any work-item or agent can occur between the read and write performed by
the instruction.

If multiple atomic memory instructions from different work-items or agents target the same memory
location, the instructions are serialized in an undefined order. In particular, if multiple work-items in the
same wavefront target the same memory location, they will be serialized in an undefined order.

The address of atomic memory instructions must be naturally aligned to a multiple of the access size. If the
address is not naturally aligned, then the result is undefined and might generate a memory exception.

Atomic memory instructions only allow global segment, group segment and flat addresses. Accesses to
segments other than global and group by means of a flat address is undefined behavior.

Most atomic read-modify-write memory instructions have two forms:

l atomic instructions which return the value that was read before the modification. These
instructions require the dest (destination) operand.

l atomicnoret instructions which do not return a value. These instructions do not have a
destination operand.

An implementation may execute atomicnoret read-modify-write memory instructions faster than the
corresponding atomic read-modify-write memory instructions. Therefore, compilers should identify cases
where the result of read-modify-write memory instructions is not needed and whenever possible, should
generate atomicnoret instructions.

180 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 181

Both atomic and atomicnoret instructions can specify a memory order and memory scope.

For more information, see:

l 6.2. Memory Model (page 169)

l 6.6. Atomic (atomic) Instructions (below)

l 6.7. Atomic No Return (atomicnoret) Instructions (page 185)

6.6 Atomic (atomic) Instructions
The atomic memory (atomic) instructions atomically load the value at address into dest, and, except
for atomic_ld, store the result of a reduction operation at address, overwriting the original value. The
reduction operation is performed on the loaded value and src0 (and for atomic_cas, also with src1).
atomic instructions are atomic memory instructions that can either be synchronizing or non-
synchronizing, all except atomic_ld are read-modify-write instructions (see 6.2. Memory Model (page
169)).

6.6.1 Syntax

Table 6–3 Syntax for Atomic Instructions

Opcode and Modifiers Operands
atomic_ld_segment_order_scope_equiv(n)_TypeLength dest, address

atomic_and_segment_order_scope_equiv(n)_TypeLength dest, address, src0

atomic_or_segment_order_scope_equiv(n)_TypeLength dest, address, src0

atomic_xor_segment_order_scope_equiv(n)_TypeLength dest, address, src0

atomic_exch_segment_order_scope_equiv(n)_TypeLength dest, address, src0

atomic_add_segment_order_scope_equiv(n)_TypeLength dest, address, src0

atomic_sub_segment_order_scope_equiv(n)_TypeLength dest, address, src0

atomic_wrapinc_segment_order_scope_equiv(n)_TypeLength dest, address, src0

atomic_wrapdec_segment_order_scope_equiv(n)_TypeLength dest, address, src0

atomic_max_segment_order_scope_equiv(n)_TypeLength dest, address, src0

atomic_min_segment_order_scope_equiv(n)_TypeLength dest, address, src0

atomic_cas_segment_order_scope_equiv(n)_TypeLength dest, address, src0, src1

Explanation of Modifiers

segment: Optional segment: global or group. If omitted, flat is used, and address must be in the global or group
segment. See 2.8. Segments (page 31).

order: Memory order used to specify synchronization. Can be rlx (relaxed) and scacq (sequentially consistent
acquire) for all instructions, and for all instructions except ld can also be screl (sequentially consistent release) or
scar (sequentially consistent acquire and release). See 6.2.1. Memory Order (page 169).

scope: Memory scope used to specify synchronization. Can be wave (wavefront) and wg (work-group) for global or
group segments, and for global segment can also be agent (kernel agent) or system (system). For a flat address,
can be wave, wg, agent, and system, but if the address references the group segment, agent and system behave as
if wg was specified. See 6.2.2. Memory Scope (page 170).

equiv(n): Optional: n is an equivalence class. Used to specify the equivalence class of the memory locations being
accessed. If omitted, class 0 is used, which indicates that any memory location may be aliased. See 6.1.4.
Equivalence Classes (page 168).

Type: b for ld, and, or, xor, exch, cas; u and s for add, sub, max, min; u for wrapinc, wrapdec. See Table 4–2 (page
99).

Chapter 6. Memory Instructions 6.6 Atomic (atomic) Instructions

Chapter 6. Memory Instructions 6.6 Atomic (atomic) Instructions

Explanation of Modifiers

Length: 32, 64. See Table 4–2 (page 99). 64 is not allowed for small machine model. See 2.9. Small and Large
Machine Models (page 39).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register.

address: Source location in the specified segment. Must be an address expression for an address in segment (see
4.18. Address Expressions (page 106)).

src0, src1: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

Invalid address exceptions are allowed. May generate a memory exception if address is unaligned.

For Brig syntax, see 18.7.2. BRIG Syntax for Memory Instructions (page 354).

6.6.2 Description of Atomic and Atomic No Return Instructions

ld

Loads the contents of the address into dest.

dest = [address];

NOTE: There is no atomicnoret version of this instruction.

st

Stores the value in src0 to address.

[address] = src0;

NOTE: There is only an atomicnoret version of this instruction.

and

ANDs the contents of the address with the value in src0.

For the atomic instruction, sets dest to the original contents of the address.

original = [address];
[address] = original & src0;
dest = original; // Only if atomic instruction

or

ORs the contents of the address with the value in src0.

For the atomic instruction, sets dest to the original contents of the address.

original = [address];
[address] = original | src0;
dest = original; // Only if atomic instruction

xor

XORs the contents of the address with the value in src0.

For the atomic instruction, sets dest to the original contents of the address.

182 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 183

original = [address];
[address] = original ^ src0;
dest = original; // Only if atomic instruction

exch

Replaces the contents of the address with src0. Sets dest to the original contents of the address.

original = [address];
[address] = src0;
dest = original;

NOTE: There is no atomicnoret version of this instruction.

add

Adds (using integer arithmetic) the value in src0 to the contents of the memory location with address
address. For the atomic instruction, sets dest to the original contents of the address.

original = [address];
[address] = original + src0;
dest = original; // Only if atomic instruction

sub

Subtracts (using integer arithmetic) the value in src0 from the contents of the memory location with
address address. For the atomic instruction, sets dest to the original contents of the address.

original = [address];
[address] = original - src0;
dest = original; // Only for atomic instruction

min, max

Sets the memory location with address to the minimum/maximum of the original value and src0. For
the atomic instructions, sets dest to the original contents of the address.

original = [address];
[address] = min/max(original, src0);
dest = original; // Only if atomic instruction

wrapinc

Increments, with wrapping, the contents of the address using the formula:

original = [address];
[address] = (original >= src0) ? 0 : (original + 1);
dest = original; // Only for atomic instruction

After the instruction, the contents of the address will be in the range [0, src0] inclusive. For the
atomic instruction, sets dest to the original contents of the address.

NOTE: Only unsigned increment is available.

NOTE: If a non-wrapping increment is required, then use add with the immediate value of 1. On some
implementations this may perform significantly better than a wrapinc.

wrapdec

Decrements, with wrapping, the contents of the address using the formula:

original = [address];
[address] = ((original == 0) || (original > src0)) ? src0 : (original - 1);
dest = original; // Only for atomic instruction

Chapter 6. Memory Instructions 6.6 Atomic (atomic) Instructions

Chapter 6. Memory Instructions 6.6 Atomic (atomic) Instructions

After the instruction, the contents of the address will be in the range [0, src0] inclusive. For the
atomic instruction, sets dest to the original contents of the address.

NOTE: Only unsigned decrement is available.

NOTE: If a non-wrapping decrement is required, then use sub with the immediate value of 1. On some
implementations this may perform significantly better than a wrapdec.

cas

Compare and swap. If the original contents of the address are equal to src0, then the contents of the
location are replaced with src1. For the atomic instruction, sets dest to the original contents of the
address, regardless of whether the replacement was done.

original = [address];
[address] = (original == src0) ? src1 : original;
dest = original; // Only for atomic instruction

NOTE: There is no atomicnoret version of this instruction.

Examples
atomic_ld_global_rlx_system_equiv(49)_b32 $s1, [&x];
atomic_ld_global_scacq_agent_b32 $s1, [&x];
atomic_ld_group_scacq_wg_b32 $s1, [&x];
atomic_ld_scacq_system_b64 $d1, [$d0];

atomic_and_global_scar_wg_b32 $s1, [&x], 23;
atomic_and_global_rlx_wave_b32 $s1, [&x], 23;
atomic_and_group_rlx_wg_b32 $s1, [&x], 23;
atomic_and_rlx_system_b32 $s1, [$d0], 23;

atomic_or_global_scar_system_b64 $d1, [&x], 23;
atomic_or_global_screl_system_b64 $d1, [&x], 23;
atomic_or_group_scacq_wave_b64 $d1, [&x], 23;
atomic_or_rlx_system_b64 $d1, [$d0], 23;

atomic_xor_global_scar_system_b64 $d1, [&x], 23;
atomic_xor_global_rlx_system_b64 $d1, [&x], 23;
atomic_xor_group_rlx_wg_b64 $d1, [&x], 23;
atomic_xor_screl_agent_b64 $d1, [$d0], 23;

atomic_cas_global_scar_system_b64 $d1, [&x], 23, 12;
atomic_cas_global_rlx_system_b64 $d1, [&x], 23, 1;
atomic_cas_group_rlx_wg_b64 $d1, [&x], 23, 9;
atomic_cas_rlx_system_b64 $d1, [$d0], 23, 12;

atomic_exch_global_scar_system_b64 $d1, [&x], 23;
atomic_exch_global_rlx_system_b64 $d1, [&x], 23;
atomic_exch_group_rlx_wg_b64 $d1, [&x], 23;
atomic_exch_rlx_system_b64 $d1, [$d0], 23;

atomic_add_global_scar_system_u64 $d1, [&x], 23;
atomic_add_global_rlx_system_s64 $d1, [&x], 23;
atomic_add_group_rlx_wg_u64 $d1, [&x], 23;
atomic_add_screl_system_s64 $d1, [$d0], 23;

atomic_sub_global_scar_system_u64 $d1, [&x], 23;
atomic_sub_global_rlx_system_s64 $d1, [&x], 23;
atomic_sub_group_rlx_wg_u64 $d1, [&x], 23;
atomic_sub_rlx_agent_s64 $d1, [$d0], 23;

184 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 185

atomic_wrapinc_global_scar_system_u64 $d1, [&x], 23;
atomic_wrapinc_global_rlx_system_u64 $d1, [&x], 23;
atomic_wrapinc_group_rlx_wg_u64 $d1, [&x], 23;
atomic_wrapinc_rlx_system_u64 $d1, [$d0], 23;

atomic_wrapdec_global_scar_system_u64 $d1, [&x], 23;
atomic_wrapdec_global_rlx_system_u64 $d1, [&x], 23;
atomic_wrapdec_group_rlx_wg_u64 $d1, [&x], 23;
atomic_wrapdec_rlx_system_u64 $d1, [$d0], 23;

atomic_max_global_scar_system_s64 $d1, [&x], 23;
atomic_max_global_rlx_system_s64 $d1, [&x], 23;
atomic_max_group_rlx_wg_u64 $d1, [&x], 23;
atomic_max_rlx_system_u64 $d1, [$d0], 23;

atomic_min_global_scar_system_s64 $d1, [&x], 23;
atomic_min_global_rlx_system_s64 $d1, [&x], 23;
atomic_min_group_rlx_wg_u64 $d1, [&x], 23;
atomic_min_rlx_system_u64 $d1, [$d0], 23;

6.7 Atomic No Return (atomicnoret) Instructions
The atomic no return memory (atomicnoret) instructions, except atomicnoret_st, atomically load
the value at location address, and store the result of a reduction operation at address, overwriting the
original value. The reduction operation is performed on the loaded value and src0. The atomicnoret_
st instruction atomically stores the value in src0 at address. The atomicnoret instructions do not
have a destination, are atomic memory instructions that can either be synchronizing or non-synchronizing,
and all except atomicnoret_st are read-modify-write instructions (see 6.2. Memory Model (page 169)).

6.7.1 Syntax

Table 6–4 Syntax for Atomic No Return Instructions

Opcodes and Modifiers Operands
atomicnoret_st_segment_order_scope_equiv(n)_TypeLength address, src0

atomicnoret_and_segment_order_scope_equiv(n)_TypeLength address, src0

atomicnoret_or_segment_order_scope_equiv(n)_TypeLength address, src0

atomicnoret_xor_segment_order_scope_equiv(n)_TypeLength address, src0

atomicnoret_add_segment_order_scope_equiv(n)_TypeLength address, src0

atomicnoret_sub_segment_order_scope_equiv(n)_TypeLength address, src0

atomicnoret_wrapinc_segment_order_scope_equiv(n)_TypeLength address, src0

atomicnoret_wrapdec_segment_order_scope_equiv(n)_TypeLength address, src0

atomicnoret_max_segment_order_scope_equiv(n)_TypeLength address, src0

atomicnoret_min_segment_order_scope_equiv(n)_TypeLength address, src0

Explanation of Modifiers

segment: Optional segment: global or group. If omitted, flat is used, and address must be in the global or group
segment. See 2.8. Segments (page 31).

order: Memory order used to specify synchronization. Can be rlx (relaxed) and screl (sequentially consistent
release) for all instructions, and for all instructions except st can also be scacq (sequentially consistent acquire) or
scar (sequentially consistent acquire and release). See 6.2.1. Memory Order (page 169).

Chapter 6. Memory Instructions 6.7 Atomic No Return (atomicnoret) Instructions

Chapter 6. Memory Instructions 6.7 Atomic No Return (atomicnoret) Instructions

Explanation of Modifiers

scope: Memory scope used to specify synchronization. Can be wave (wavefront) and wg (work-group) for global or
group segments, and for global segment can also be agent (kernel agent) or system (system). For a flat address,
any value can be used, but if the address references the group segment, agent and system behave as if wg was
specified. See 6.2.2. Memory Scope (page 170).

equiv(n): Optional: n is an equivalence class. Used to specify the equivalence class of the memory locations being
accessed. If omitted, class 0 is used, which indicates that any memory location may be aliased. See 6.1.4.
Equivalence Classes (page 168).

Type: b for st, and, or, xor; u and s for add, sub, max, min; u for wrapinc, wrapdec. See Table 4–2 (page 99).

Length: 32, 64. See Table 4–2 (page 99). 64 is not allowed for small machine model. See 2.9. Small and Large
Machine Models (page 39).

Explanation of Operands (see 4.16. Operands (page 104))

address: Source location in the specified segment. Must be an address expression for an address in segment (see
4.18. Address Expressions (page 106)).

src0: Source. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

Invalid address exceptions are allowed. May generate a memory exception if address is unaligned.

For BRIG syntax, see 18.7.2. BRIG Syntax for Memory Instructions (page 354).

6.7.2 Description

See 6.6.2. Description of Atomic and Atomic No Return Instructions (page 182).

The atomicnoret instructions change memory in the same way as the atomic instructions but do not
have a destination.

Examples
atomicnoret_st_global_rlx_system_equiv(49)_b32 [&x], $s1;
atomicnoret_st_global_screl_agent_b32 [&x], $s1;
atomicnoret_st_group_screl_wg_b32 [&x], $s1;
atomicnoret_st_screl_system_b64 [$d0], $d1;

atomicnoret_and_global_scar_wg_b32 [&x], 23;
atomicnoret_and_global_rlx_wave_b32 [&x], 23;
atomicnoret_and_group_rlx_wg_b32 [&x], 23;
atomicnoret_and_rlx_system_b32 [$d0], 23;

atomicnoret_or_global_scar_system_b64 [&x], 23;
atomicnoret_or_global_screl_system_b64 [&x], 23;
atomicnoret_or_group_scacq_wave_b64 [&x], 23;
atomicnoret_or_rlx_system_b64 [$d0], 23;

atomicnoret_xor_global_scar_system_b64 [&x], 23;
atomicnoret_xor_global_rlx_system_b64 [&x], 23;
atomicnoret_xor_group_rlx_wg_b64 [&x], 23;
atomicnoret_xor_screl_agent_b64 [$d0], 23;

atomicnoret_add_global_scar_system_u64 [&x], 23;
atomicnoret_add_global_rlx_system_s64 [&x], 23;
atomicnoret_add_group_rlx_wg_u64 [&x], 23;
atomicnoret_add_screl_system_s64 [$d0], 23;

atomicnoret_sub_global_scar_system_u64 [&x], 23;

186 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 187

atomicnoret_sub_global_rlx_system_s64 [&x], 23;
atomicnoret_sub_group_rlx_wg_u64 [&x], 23;
atomicnoret_sub_rlx_agent_s64 [$d0], 23;

atomicnoret_wrapinc_global_scar_system_u64 [&x], 23;
atomicnoret_wrapinc_global_rlx_system_u64 [&x], 23;
atomicnoret_wrapinc_group_rlx_wg_u64 [&x], 23;
atomicnoret_wrapinc_rlx_system_u64 [$d0], 23;

atomicnoret_wrapdec_global_scar_system_u64 [&x], 23;
atomicnoret_wrapdec_global_rlx_system_u64 [&x], 23;
atomicnoret_wrapdec_group_rlx_wg_u64 [&x], 23;
atomicnoret_wrapdec_rlx_system_u64 [$d0], 23;

atomicnoret_max_global_scar_system_u64 [&x], 23;
atomicnoret_max_global_rlx_system_s64 [&x], 23;
atomicnoret_max_group_rlx_wg_u64 [&x], 23;
atomicnoret_max_rlx_system_s64 [$d0], 23;

atomicnoret_min_global_scar_system_u64 [&x], 23;
atomicnoret_min_global_rlx_system_s64 [&x], 23;
atomicnoret_min_group_rlx_wg_u64 [&x], 23;
atomicnoret_min_rlx_wg_s64 [$d0], 23;

6.8 Notification (signal) Instructions
Signal instructions are used for notification between threads and work-items belonging to a single process
potentially executing on different agents in the HSA system. While notification can be performed with
regular atomic memory instructions, the HSA platform architecture signals allow implementations to
optimize for power and performance during signal instructions. For example, spin loops involving atomic
memory instructions can be replaced with signal wait instructions that can be implemented using more
efficient hardware features.

Signals are used in the HSA User Mode Queue architecture for notification of packet submission,
completion and dependencies. See HSA Platform System Architecture Specification Version 1.0 section 2.8
Requirement: User Mode Queuing. Signals can also be used for user communication between work-items and
threads within the same agent and between different agents.

A signal can only be created and destroyed by HSA runtime operations. It cannot be created or destroyed
directly in HSAIL. Only signals that have been created and not destroyed can be used with signal
instructions.

A signal is referenced by a signal handle. The value of a signal handle is implementation defined, except
that the value 0 is reserved and used to represent the null signal handle. The HSA runtime will never create
a signal with the null signal handle. The null signal handle must not be used with signal instructions.

A signal is opaque, but includes a signal value. The signal value size is 32 bits for the small machine model,
and 64 bits for the large machine model (see 2.9. Small and Large Machine Models (page 39)). When a
signal is created, the size of the signal value is implied by the machine model. A signal handle that
references a signal with a 32-bit signal value is of type sig32, and one that references a signal with a 64-bit
signal value is of type sig64. Both signal handle types are 64 bits in size.

Chapter 6. Memory Instructions 6.8 Notification (signal) Instructions

Chapter 6. Memory Instructions 6.8 Notification (signal) Instructions

The signal value can only be manipulated by the signal instructions provided by the HSA runtime and by the
HSAIL signal operations described in this section. The results are undefined if signal value is accessed or
updated by any other operation, including both ordinary and atomic memory instructions. A signal
instructions specifies the size of the signal value. A signal instruction is undefined if the signal handle
provided does not reference a signal with the same size of signal value as specified by the signal instruction.

Signals are generally intended for notification between agents. Therefore, signal instructions interact with
the memory model (see 6.2. Memory Model (page 169)) as if the signal value resides in global segment
memory, is naturally aligned (see 6.1.3. Alignment (page 168)) and is accessed using atomic memory
instructions at system scope. However, an implementation is permitted to allocate the signal value in any
memory, provided all instructions interact with the memory model as if it was allocated in global segment
memory.

Signal instructions allow a memory ordering to be specified which is used by the atomic memory instruction
that accesses the signal value. The memory ordering affects how other memory instructions performed by
the same work-item or thread are made visible.

Signal handles can be passed as kernel and function arguments and can be copied between memory and
registers using ld, st, and mov instructions. Note that these instructions are copying the signal handle that
references the signal, not the signal. The memory address of a signal handle can be taken using the lda
instruction, but again this is the address of the signal handle, not the signal.

A signal handle defined as a global or readonly segment variable can have an initializer. A signal handle
type constant uses the typed constant notation (see 4.8.3. Typed Constants (page 87)): a signal handle type,
followed by an integer constant in parentheses. Only an integer constant with the value 0 is allowed, which
represents the null signal handle. The rules for using signal handle typed constants are the same as other
typed constants (see 4.8.5. How Text Format Constants Are Converted to Bit String Constants (page 92)):

l When initializing a signal handle type variable without an array dimension, a signal handle typed
constant of the same type as the variable must be used.

l When initializing a signal handle type variable with an array dimension, an array typed constant must
be used with the same array element type as the variable, the same number of array elements as
the variable, and each array element the same signal type as the variable array element type.

l An aggregate constant that includes signal typed constants can be used to initialize bit type array
variables. The aggregate constant must have the same byte size as the array variable.

The following is an example of signal handle variable initializations:

global_sig32 &name0 = sig32(0);
global_sig32 &namedsig32WithInit[2] = { sig32(0),

sig32(0)
};

global_b8 &namedStructInit[16] = { u32(4),
align(8),
sig32(0)

};

6.8.1 Syntax

188 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 189

Table 6–5 Syntax for Signal Instructions

Opcode and Modifiers Operands
signal_ld_order_TypeLength_signalType dest, signalHandle

signal_and_order_TypeLength_signalType dest, signalHandle, src0

signal_or_order_TypeLength_signalType dest, signalHandle, src0

signal_xor_order_TypeLength_signalType dest, signalHandle, src0

signal_exch_order_TypeLength_signalType dest, signalHandle, src0

signal_add_order_TypeLength_signalType dest, signalHandle, src0

signal_sub_order_TypeLength_signalType dest, signalHandle, src0

signal_cas_order_TypeLength_signalType dest, signalHandle, src0, src1

signal_wait_waitOp_order_TypeLength_signalType dest, signalHandle, src0

signal_waittimeout_waitOp_order_TypeLength_signalType dest, signalHandle, src0, timeout

signalnoret_st_order_TypeLength_signalType signalHandle, src0

signalnoret_and_order_TypeLength_signalType signalHandle, src0

signalnoret_or_order_TypeLength_signalType signalHandle, src0

signalnoret_xor_order_TypeLength_signalType signalHandle, src0

signalnoret_add_order_TypeLength_signalType signalHandle, src0

signalnoret_sub_order_TypeLength_signalType signalHandle, src0

Explanation of Modifiers

order: Memory order used to specify synchronization. Can be rlx (relaxed) for all instructions; scacq (sequentially
consistent acquire) for all instructions except st; screl (sequentially consistent release) for all instructions except
ld, wait and waittimeout; or scar (sequentially consistent acquire and release) for all instructions except st, ld,
wait and waittimeout. See 6.2.1. Memory Order (page 169).

waitOp: The comparison operation to perform. Can be eq (equal) ne (not equal), lt (less than) and gte (greater than
or equal).

Type: b for ld, st, and, or, xor, exch, cas; u and s for add, sub; s for wait, waittimeout. See Table 4–2 (page 99).

Length: 32, 64. See Table 4–2 (page 99). Must match the signal value size of signalType. See 2.9. Small and Large
Machine Models (page 39).

signalType: sig32, sig64. See Table 4–4 (page 101). Must be sig32 for small machine model and sig64 for large
machine model. See 2.9. Small and Large Machine Models (page 39).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register of type TypeLength.

signalHandle: A source operand d register that contains a value of a signal handle of type signalType. The results
are undefined if the value was not originally loaded from a global, readonly, private, spill, or kernarg segment
variable of type signalType, or from an arg segment variable that is of type signalType that was initialized with a
value that is of type signalType. Must be a signal handle for a signal created by the HSA runtime that has not
been destroyed. Must not be the null signal value of 0.

src0, src1: Sources of type TypeLength. Can be a register or immediate value.

timeout: Timeout value of type u64. Specified in same units as the system timestamp. Can be a register or
immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

Invalid address exceptions are allowed. May generate a memory exception if signal handle is null or invalid.

For Brig syntax, see 18.7.2. BRIG Syntax for Memory Instructions (page 354).

Chapter 6. Memory Instructions 6.8 Notification (signal) Instructions

Chapter 6. Memory Instructions 6.8 Notification (signal) Instructions

6.8.2 Description of Signal Instructions

ld, st, and, or, xor, exch, add, sub, cas

The signal instructions have the same definition as the corresponding atomic instructions, with the
segment as global, scope as system, the same TypeLength, the address operand
corresponding to the global segment address of the signal value specified by the signalHandle
operand, and the same other operands. See 6.6. Atomic (atomic) Instructions (page 181).

The signalnoret instructions have the same definition as the corresponding atomicnoret
instructions in a similar manner. See 6.7. Atomic No Return (atomicnoret) Instructions (page 185)

However, an implementation may use special hardware to cause any suspended work-items or threads
that are waiting on the signal to be resumed. The exception is the signal_ld which does not change
the signal value.

wait

The wait instruction suspends a work-item's execution until a signal value satisfies a specified condition,
a certain amount of time has elapsed or it spuriously returns. The conditions supported are: equal; not
equal; less than; and greater than or equal. The signal value is conceptually read using an atomic_ld
instruction, with the segment as global, scope as system, and the address operand
corresponding to the global segment address of the signal value specified by the signalHandle
operand. The read value is compared to the value specified by src0 operand using the signed
comparison specified by waitOp. When the wait instruction resumes, the last signal value read is
returned in dest operand.

A wait instruction is required to timeout and resume execution, even if the condition has not been met,
no longer than a time interval that is reasonably close to the signal timeout value defined by the HSA
runtime. The HSA runtime provides a function to obtain this value. Additionally, a wait instruction can
spuriously resume at any time sooner than the timeout (for example, due to system or other external
factors) even when the condition has not been met. Conceptually the wait instruction behaves as:

timer.init(hsa_signal_get_timeout());
do {
original = [signal_value_address(signalHandle)];

} while (!(original waitOpsrc0) && !timer.expired() && !spurious_signal_return());
dest = original;

However, an implementation can use special hardware to save power and improve performance. For
example, a wait instruction may suspend thread or work-item execution, and resume it in response to
another signal instruction that changes the value of a signal value.

Since the wait instruction can return spuriously, it is necessary to test the returned value to see if the
condition was met. For this reason a wait instruction is often used in a loop. For example:

// Wait for signal $d1 to be equal to 10
do {
signal_wait_eq_scacq_s64_sig64 $d0, $d1, 10;

} while ($d0 != 10);

A wait instruction can be used in divergent code. However, because it suspends execution of a work-
item, care should be taken when waiting on a signal that may be updated by a work-item executing in
the same wavefront, or a work-item later in the flattened work-item order, as deadlock may occur.

190 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 191

The signal values seen by a wait instruction are guaranteed to make forward progress in the
modification order of the signal value memory location. However, it is not guaranteed that the wait
instruction will see all values in the modification order. It is therefore possible that a signal value can be
updated such that it satisfies the condition of a suspended wait instruction, but the wait instruction does
not observe it before it is changed to a value that does not satisfy its condition, and therefore the wait
instruction does not resume. By extension, if this scenario happens while multiple threads or work-
items are waiting on a signal, some may resume while some may not. It is up to the application to use
signals in a way that accounts for this behavior, for example by ensuring signal values only advance, or
using multiple signals to coordinate such multiple updates.

A wait instruction is not required to resume immediately that the signal value satisfies the condition,
even if the wait instruction does observe a satisfying value.

waittimeout

Same as wait except src1 is used as the timeout value. src1 is treated as a u64 and specified in the
same units as the system timestamp (see HSA Platform System Architecture Specification. The src1
value is only a hint, and an implementation can choose to timeout either before or after the specified
value, but no longer than a time interval that is reasonably close to the signal timeout value defined by
the HSA runtime.

timer.init(implementation_defined_signal_timeout(src1, hsa_signal_get_timeout()));
do {
original = [signal_value_address(signalHandle)];

} while (!(original waitOpsrc0) && !timer.expired() && !spurious_signal_return());
dest = original;

Examples
signal_ld_rlx_b64_sig64 $d2, $d0;
signal_ld_scacq_b32_sig32 $s2, $d1;

signal_and_scar_b64_sig64 $d2, $d0, 23;
signal_and_rlx_b32_sig32 $s2, $d1, 23;

signal_or_scar_b64_sig64 $d2, $d0, 23;
signal_or_screl_b32_sig32_sig32 $s2, $d1, 23;

signal_xor_scar_b64_sig64 $d2, $d0, 23;
signal_xor_rlx_b32_sig32 $s2, $d1, 23;

signal_cas_scar_b64_sig64 $d2, $d0, 23, 12;
signal_cas_rlx_b32_sig32 $s2, $d1, 23, 1;

signal_exch_scar_b64_sig64 $d2, $d0, 23;
signal_exch_rlx_b32_sig32 $s2, $d1, 23;

signal_add_scar_u64_sig64 $d2, $d0, 23;
signal_add_rlx_s32_sig32 $s2, $d1, 23;

signal_sub_scar_u64_sig64 $d2, $d0, 23;
signal_sub_rlx_s32_sig32 $s2, $d1, 23;

signal_wait_eq_rlx_s64_sig64 $d2, $d0, 23;
signal_wait_ne_rlx_s64_sig64 $d2, $d0, $d3;
signal_wait_lt_rlx_s32_sig32 $s2, $d1, WAVESIZE;
signal_wait_gte_rlx_s32_sig32 $s2, $d1, 23;

Chapter 6. Memory Instructions 6.8 Notification (signal) Instructions

Chapter 6. Memory Instructions 6.9 Memory Fence (memfence) Instruction

signal_waittimeout_eq_rlx_s64_sig64 $d2, $d0, 23, $d4;
signal_waittimeout_ne_rlx_s64_sig64 $d2, $d0, $d3, 1000;
signal_waittimeout_lt_rlx_s32_sig32 $s2, $d1, WAVESIZE, $d4;
signal_waittimeout_gte_rlx_s32_sig32 $s2, $d1, 23, $d4;

signalnoret_st_rlx_b64_sig64 $d0, $d2;
signalnoret_st_screl_b32_sig32 $d1, $s2;

signalnoret_and_scar_b64_sig64 $d0, 23;
signalnoret_and_rlx_b32_sig32 $d1, 23;

signalnoret_or_scar_b64_sig64 $d0, 23;
signalnoret_or_screl_b32_sig32 $d1, 23;

signalnoret_xor_scar_b64_sig64 $d0, 23;
signalnoret_xor_rlx_b32_sig32 $d1, 23;

signalnoret_add_scar_u64_sig64 $d0, 23;
signalnoret_add_rlx_s32_sig32 $d1, 23;

signalnoret_sub_scar_u64_sig64 $d0, 23;
signalnoret_sub_rlx_s32_sig32 $d1, 23;

6.9 Memory Fence (memfence) Instruction
The memory fence (memfence) instruction can either be a release memory fence, an acquire memory
fence, or both an acquire and a release memory fence. memfence instructions are synchronizing memory
operations. See 6.2. Memory Model (page 169).

6.9.1 Syntax

Table 6–6 Syntax for memfence Instruction

Opcode and Modifier
memfence_order_scope

Explanation of Modifier

order: Memory order used to specify synchronization. Can be scacq (sequentially consistent acquire), screl
(sequentially consistent release) or scar (sequentially consistent acquire and release). See 6.2.1. Memory Order
(page 169).

scope: Memory scope used to specify synchronization. Can be wave (wavefront), wg (work-group), agent (kernel
agent) or system (system). See6.2.2. Memory Scope (page 170).

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.2. BRIG Syntax for Memory Instructions (page 354).

6.9.2 Description

The memfence instruction allows memory access and updates to be synchronized between work-items and
other agents for the global and group segments. See 6.2. Memory Model (page 169).

For example:

st_global_u32 1, [&x];
memfence_screl_system; // Will ensure 1 is visible to work-items that

// subsequently perform an acquire at system scope.

192 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 193

The memfence instruction can be used in conditional code.

Examples
memfence_scacq_system;
memfence_screl_wg;
memfence_scacq_agent;
memfence_scar_wave;

Chapter 6. Memory Instructions 6.9 Memory Fence (memfence) Instruction

Chapter 7. Image Instructions 7.1 Images in HSAIL

CHAPTER 7.
Image Instructions

This chapter describes how images and samplers are used in HSAIL and also describes the associated read,
load, store, memory fence and query instructions.

The image operations defined in this chapter are only allowed if the "IMAGE" extension directive has been
specified. See 13.1.2. extension IMAGE (page 274).

The minimum limits with respect to images are specified in Appendix A. Limits (page 374).

NOTE: For background information, see:

l The OpenCL Specification Version 2.0:

o 5.3 Image Objects

o http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

l The OpenCL C Specification Version 2.0:

o 6.13.14 Image Read and Write Functions

o 5. Image Addressing and Filtering

o http://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf

l The OpenCL Extension Specification Version 2.0:

o http://www.khronos.org/registry/cl/specs/opencl-2.0-extensions.pdf

7.1 Images in HSAIL

7.1.1 Why Use Images?

Images are a graphics feature that can sometimes be useful in data-parallel computing. Images can be
accessed in one, two, or three dimensions. Image memory is a special kind of memory access that can
make use of dedicated hardware often provided for graphics. Many implementations will provide such
dedicated hardware to speed up image operations:

l Special caches and tiling modes that reorder the memory locations of 2D and 3D images.
Implementations can also insert gaps in the memory layout to improve alignment. These can save
bandwidth by improving data locality and cache line usage compared to traditional linear arrays.

l Image implementations can create caching hints using read-only images.

l Hardware support for out-of-bounds coordinates.

l Image coordinates can be unnormalized, or normalized floating-point values. When a normalized
coordinate is used, it is scaled to the image size of the corresponding dimension, allowing values in
the range 0.0 to +1.0 to access the entire image.

194 | HSA Programmer's ReferenceManual, Version1.0 Final

http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf
http://www.khronos.org/registry/cl/specs/opencl-2.0-extensions.pdf

HSA Programmer's ReferenceManual, Version1.0 Final | 195

l The values read and written to an image can be stored in memory as integer values, but returned as
unsigned or signed normalized floating-point values in the range 0.0 to +1.0 or -1.0 to +1.0,
respectively.

l Values can be converted between linear RGB and sRGB color spaces.

l Image memory offers different addressing modes, as well as data filtering, for some specific image
formats. For example, linear filtering is a way to determine a value for a normalized floating-point
coordinate by averaging the values in the image that are around the coordinate. Mathematically, this
tends to smooth out the values or filter out high-frequency changes.

While images are frequently used to hold visual data, an HSAIL program can use an image to hold any kind
of data.

In all HSAIL implementations, the use of images provides a collection of capabilities that extend the simple
CPU memory view.

Images can also be used to optimize write operations by delaying them until the next kernel execution.

7.1.2 Image Overview

An image consists of the following information:

l Image geometry

l Image format

l Image size

l Reference to the actual image data

An image is conceptually an array of image elements (also known as pixels). The image elements can either
be organized as a single one, two, or three dimensional image layer, or as an array of one or two
dimensional image layers. The organization is termed the image geometry. An image is indexed by one,
two, or three coordinates accordingly. The coordinates are named x, y, and z. See 7.1.3. Image Geometry
(next page).

The image format specifies the properties of the image elements in terms of their channel order and
channel type. Each element in the image has the same image format. See 7.1.4. Image Format (page 198).

There can be implementation dependent restrictions on how an image can be accessed and there is a
minimum set of required access permissions for different image formats and geometries. See 7.1.5. Image
Access Permission (page 204).

Images are accessed using image coordinates. See 7.1.6. Image Coordinate (page 206).

Images are created by the HSA runtime for a specific agent by specifying the image properties that include
the image geometry, image size, image format, image access permission and image data. Images are
referenced by image instructions using an opaque image handle. See 7.1.7. Image Creation and Image
Handles (page 211).

The rdimage image instruction uses a sampler to specify how the image coordinates are processed to
access the image data. Samplers are created by the HSA runtime for a specific agent by specifying the
coordinate processing properties. Samplers are referenced by image instructions using an opaque sampler
handle. See 7.1.8. Sampler Creation and Sampler Handles (page 214).

Chapter 7. Image Instructions 7.1 Images in HSAIL

Chapter 7. Image Instructions 7.1 Images in HSAIL

There are a set of image instructions that access images, and these have certain limitations on which
images they can operate, and how samplers can be used. There are also requirements on how image and
sampler handles are used. See 7.1.9. Using Image Instructions (page 216).

The image memory model defines the interaction of image operations between different work-items and
other agents. See 7.1.10. Image Memory Model (page 218).

7.1.3 Image Geometry

Each image has an associated geometry. See Table 7–1 (below) for a list of the image geometries
supported.

Table 7–1 Image Geometry Properties

Image
Geometry

Coordinates Channel Orders Image Operations Description

x y z
1d width unused unused a, r, rx, rg, rgx, ra, rgba, rgb, rgbx,

bgra, argb, abgr, srgb, srgbx, srgba,
sbgra, intensity, luminance

rdimage_1d,
ldimage_1d,
stimage_1d

one-
dimensional
image

2d width height unused rdimage_2d,
ldimage_2d,
stimage_2d

two-
dimensional
image

3d width height depth rdimage_3d,
ldimage_3d,
stimage_3d

three-
dimensional
image

1da width array
index

unused rdimage_1da,
ldimage_1da,
stimage_1da

one-
dimensional
image array

2da width height array
index

rdimage_2da,
ldimage_2da,
stimage_2da

two-
dimensional
image array

1db width unused unused ldimage_1db,
stimage_1db

one-
dimensional
image
buffer

2ddepth width height unused depth, depth_stencil rdimage_2ddepth,
ldimage_2ddepth,
stimage_2ddepth

two-
dimensional
depth
image

2dadepth width height array
index

rdimage_2dadepth,
ldimage_2dadepth,
stimage_2dadepth

two-
dimensional
depth
image array

1D

A 1D image contains image data that is organized in one dimension with a size specified by width. It can
be addressed with a single coordinate x.

196 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 197

2D

A 2D image contains image data that is organized in two dimensions with a size specified by width and
height. It can be addressed by two coordinates (x, y) corresponding to the width and height,
respectively.

3D

A 3D image contains image data that is organized in three dimensions with a size specified by width,
height, and depth. It can be addressed by three coordinates (x, y, z) corresponding to the width, height,
and depth, respectively.

1DA

A 1DA image contains an array of a homogeneous collection of one-dimensional images, all with the
same size, format, and order, with a size specified by width and array indices. It can be addressed by
two coordinates (x, y) corresponding to the width and array indices, respectively.

If a sampler is used, special rules apply to the array index y coordinate. It is always treated as
unnormalized even if the sampler specifies normalized. It is rounded to an integral value using round to
nearest even integer, and clamped to the range 0 to array size - 1.

An important difference between 1DA and 2D images is that samplers never cause values in different
images layers of the array to be combined when computing the returned image element.

2DA

A 2DA image contains an array of a homogeneous collection of two-dimensional images, all with the
same size, format, and order, with a size specified by width, height, and array size. It can be addressed
by three coordinates (x, y, z) corresponding to the width, height, and array indices, respectively.

If a sampler is used, special rules apply to the array index z coordinate. It is always treated as
unnormalized even if the sampler specifies normalized. It is rounded to an integral value using round to
nearest even integer, and clamped to the range 0 to array size - 1.

An important difference between 2DA and 3D images is that samplers never cause values in different
images layers of the array to be combined when computing the returned image element.

1DB

A 1DB image contains image data that is organized in one dimension with a size specified by width. It
can be addressed with a single coordinate x.

Samplers cannot be used with 1DB images. Consequently the rdimage image instruction does not
support 1DB images.

An important difference between 1DB and 1D images is that the image data can be allocated in the
global segment and can have larger limits on the maximum image size supported. On some
implementations this may result in a 1DB image having lower performance than an equivalent 1D
image. The image data layout is implementation dependent. Access to the image data using both global
segment addressing and image instructions is undefined unless the image segment, which is used
when image instructions access image data, is made coherent with the global segment by appropriate
acquire and release memory fences. See 7.1.10. Image Memory Model (page 218)7.1.10. Image
Memory Model (page 218)

Chapter 7. Image Instructions 7.1 Images in HSAIL

Chapter 7. Image Instructions 7.1 Images in HSAIL

2DDEPTH

Same as the 2D geometry except the image instructions only have a single access component instead
of four. Requires that the image component order be depth or depth_stencil.

2DADEPTH

Same as the 2DA geometry except the image instructions only have a single access component instead
of four. Requires that the image component order be depth or depth_stencil.

NOTE: Graphic systems frequently support many additional image formats, cubemaps, three-dimensional
arrays, and so forth. HSAIL has just enough graphics to support common programming languages. For
example, all the core features of The OpenCL Specification Version 2.0 are supported. The BRIG enumeration
for geometry includes additional geometry values that can be used by extensions. See 18.3.13.
BrigImageGeometry (page 305).

7.1.4 Image Format

The image format specifies the properties of the image elements in terms of their channel order and
channel type. Each element in the image has the same image format. Associated with an image format
there is a number called the bits per pixel (bpp) which is the number of bits needed to hold one element of
an image.

7.1.4.1 Channel Order

Each image element in the image data has one, two, three, or four values called memory components (also
known as channels). Typically the memory components are named r, g, b and a (for red, green, blue, and
alpha respectively, which can correspond to the color and transparency of the pixel), although some image
orders use other names such as i, L, and d (for intensity, luminance, and depth respectively).

The image access instructions always specify four access components regardless of the number of memory
components present in the image data. The exception is the 2DDEPTH and 2DADEPTH image geometries
which only have one access component.

The channel order specifies how many memory components each image element has and how those
memory components are mapped to the four access components. The mapping is also referred to as
swizzling.

Each channel order has an associated border color that is used as the access value by some coordinate
addressing modes when an image is accessed by out of range coordinates. For the depth and depth_
stencil channel orders it is implementation defined if the border color is (0) or (1). (See 7.1.6.2.
Addressing Mode (page 207)).

NOTE: The OpenCL Extension Specification Version 1.2 specifies that the border color of depth images is (0)
while the core OpenCL Specification Version 2.0 defines it as (1). A future version of HSAIL may define the
value that must be used when this inconsistency has been resolved.

See Table 7–2 (facing page) for a list of the channel orders supported and their associated border colors.

198 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 199

Table 7–2 Channel Order Properties

Channel
Order

Memory
Components

Access
Components

Border Color Channel Types Image
Geometries

a (a) (0,0,0,a) (0,0,0,0) snorm_int8, snorm_int16, unorm_int8,
unorm_int16, signed_int8, signed_
int16, signed_int32, unsigned_int8,
unsigned_int16, unsigned_int32,
half_float, float

1D, 2D, 3D,
1DA, 2DA,
1DB

r (r) (r,0,0,1) (0,0,0,1)
rx (r) (r,0,0,1) (0,0,0,0)
rg (r,g) (r,g,0,1) (0,0,0,1)
rgx (r,g) (r,g,0,1) (0,0,0,0)
ra (r,a) (r,0,0,a) (0,0,0,0)
rgba (r,g,b,a) (r,g,b,a) (0,0,0,0)
rgb (r,g,b) (r,g,b,1) (0,0,0,1) unorm_short_565, unorm_short_555,

unorm_int_101010rgbx (r,g,b) (r,g,b,1) (0,0,0,0)
bgra (b,g,r,a) (r,g,b,a) (0,0,0,0) unorm_int8, snorm_int8, signed_int8,

unsigned_int8argb (a,r,g,b) (r,g,b,a) (0,0,0,0)
abgr (a,b,g,r) (r,g,b,a) (0,0,0,0)
srgb (r,g,b) (r,g,b,1) (0,0,0,1) unorm_int8(Component memory type

representation uses sRGB, and access type
representation uses linear RGB. The
conversion is done before computing the
weighted average when a sampler with
linear filtering is used.)

srgbx (r,g,b) (r,g,b,1) (0,0,0,0)

srgba (r,g,b,a) (r,g,b,a) (0,0,0,0)

sbgra (b,g,r,a) (r,g,b,a) (0,0,0,0)

intensity (i) (i,i,i,i) (0,0,0,0) unorm_int8, unorm_int16, snorm_int8,
snorm_int16, half_float, floatluminance (L) (L,L,L,1) (0,0,0,1)

depth (d) (d) implementation
defined if (0) or
(1)

unorm_int16, unorm_int24, float 2DDEPTH,
2DADEPTH

depth_
stencil

(d,s) (d) defined if (0) or
(1)

unorm_int24, float (The stencil value s is
not available in HSAIL.)

7.1.4.1.1 x-Form Channel Orders

The x-form channel orders differ from the corresponding non-x-form channel orders only in the value of the
a component used for the border color. The x-forms use 0, resulting in transparent white, and the non-x
forms use 1, resulting in opaque white. Thus an x-form conceptually behaves the same as the
corresponding non-x-form image order with an a component, such that the a component is set to 1 for all
elements that are in range of the image dimensions, and 0 for any elements outside the range of the image
dimensions. Thus the x-form avoids the expense of actually storing the a component in the image data. This
also allows a sampler with linear filtering and clamp_to_border addressing mode to anti-alias the
edge of an image with an x-form channel order. For example, an xrgb channel order behaves like the an
rgba channel order which has the alpha component set to 1 for in-range elements and 0 for out-of-range
elements, but only requires the same amount of image data memory as the rgb channel order.

Chapter 7. Image Instructions 7.1 Images in HSAIL

Chapter 7. Image Instructions 7.1 Images in HSAIL

7.1.4.1.2 Standard RGB (s-Form) Channel Orders

Standard RGB (sRGB) data roughly displays colors in a linear ramp of luminosity levels such that an average
observer, under average viewing conditions, can view them as perceptually equal steps on an average
display. For more information see the sRGB color standard, IEC 61996-2-1, at IEC (International
Electrotechnical Commission).

The srgb, srgbx, srgba, sbgra channel orders differ from the corresponding non-s-forms in that they
convert the r, g, and b components from linear RGB to sRGB values when storing to memory, and from
sRGB to linear RGB on read. The a channel, if present, is not converted and is always treated as linear.
When a sampler is used with linear filtering, the conversion is done before the weighted average is
computed.

When reading an s-form channel order, the r, g, and b memory component values are first converted to
sRGB access component values using the channel type conversion method (see 7.1.4.2. Channel Type
(below)), and then the resulting sRGB access values are converted to linear RGB access values by evaluating
the following formula:

access_component = (access_component = 0.04045) ? (access_component / 12.92)
: (((access_component + 0.055) / 1.055)2.4);

This conversion must be done such that the infinitely precise inverse conversion applied to the result is less
than or equal to 0.5 ULP (see 4.19.6. Unit of Least Precision (ULP) (page 112)) of the original value, with the
additional requirement that an sRGB access component value of 0.0 or 1.0 is converted to the same linear
RGB access component value.

When storing an s-form channel order, the linear RGB r, g, and b access component values are first
converted to sRGB access component values using the following formula, and then the channel type
conversion method is used to convert the resulting sRGB access component values to the memory
component value:

access_component = (access_component
is_nan

) ? 0.0
: (access_component > 1.0) ? 1.0
: (access_component < 0.0) ? 0.0
: (access_component < 0.0031308) ? (access_component * 12.92)
: ((1.055 * c1.0/2.4) - 0.055);

This conversion must be done such the result is less than or equal to 0.6 of the infinitely precise result, with
the additional requirements that a linear access component value of 0.0 or 1.0 is converted to the same
sRGB access component value, and that the result is in the closed interval [0.0, 1.0]. No invalid operation
exception is generated if the value is a signaling NaN.

No inexact exception is generated for either conversion.

The HSA runtime allows the same image data to be referenced by a 2D image handle created specifying the
s-form channel order and one that was created with the same image geometry, size, and format, except
that the corresponding non-s-form of the channel order was specified. This allows the same image data to
be accesses using either sRGB values or linear RGB values. Only one of the handles can be used at a time in
a single kernel dispatch if writes are performed.

7.1.4.2 Channel Type

The channel type specifies both the component memory type and the component access type. The
component memory type specifies how the value of the memory component is encoded in the image data.
The component access type specifies how the value of the memory component is returned by image read

200 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 201

operations, or specified to image store operations. Each channel type has a conversion method that is used
to convert from the component memory type to the component access type by image read instructions, and
from the component access type to the component memory type by image write instructions. See Table 7–3
(below) for a list of the channel types supported together with their properties.

Table 7–3 Channel Type Properties

Channel Type Memory Type Access Type Conversion Method

Bit Size Encoding
snorm_int8 8 signed integer f32 SignedNormalize(27-1)

snorm_int16 16 signed integer SignedNormalize(215-1)

unorm_int8 8 unsigned integer UnsignedNormalize(28-1)

unorm_int16 16 unsigned integer UnsignedNormalize(216-1)

unorm_int24 24 unsigned integer UnsignedNormalize(224-1)

unorm_short_565 r=5 bits[15:11] unsigned integer UnsignedNormalize(25-1)

g=6 bits[10:05] UnsignedNormalize(26-1)

b=5 bits[04:00] UnsignedNormalize(25-1)

unorm_short_555 r=5 bits[14:10] unsigned integer

g=5 bits[09:05]

b=5 bits[04:00]

ignored bit[15]

unorm_int_101010 r=10 bits[29:20] unsigned integer UnsignedNormalize(210-1)

g=10 bits[19:10]

b=10 bits[09:00]

ignored bits[31:30]
signed_int8 8 signed integer s32 SignedClamp(-27, 27-1)

signed_int16 16 signed integer SignedClamp(-215, 215-1)

signed_int32 32 signed integer Identity()
unsigned_int8 8 unsigned integer u32 UnsignedClamp(28-1)

unsigned_int16 16 unsigned integer UnsignedClamp(216-1)

unsigned_int32 32 unsigned integer Identity()
half_float 16 float f32 HalfFloat()

float 21 float Float()

The memory type is specified as the number of bits occupied by the component (also known as the bit
depth), and whether the value is represented as a two's complement signed or unsigned integer or as an
IEEE/ANSI Standard 754-2008 for floating-point value (see 4.19.1. Floating-Point Numbers (page 109)). For
the packed representations of unorm_short_555 , unorm_short_565, and unorm_int_101010,
the components are the specified bit fields within the image element. For unorm_short_565, the bit size
varies according to whether the r, g, or b component.

The access type is the HSAIL type used in the operands of the image instructions that specify the image
component (see Table 4–2 (page 99)).

Chapter 7. Image Instructions 7.1 Images in HSAIL

Chapter 7. Image Instructions 7.1 Images in HSAIL

The conversion method can be one of:

Identity()

No conversion is performed. On read or write all values are preserved.

Float()

On a read or write image instruction, it is implementation defined if subnormal values are flushed to
zero, if NaN values are propagated or payloads preserved (regardless of the profile specified) or if
signaling NaNs are converted to quiet NaNs (see 4.19.4. Not A Number (NaN) (page 111)). All other
values are preserved. No invalid operation exception is generated if the value is a signaling NaN. No
inexact exception is generated.

HalfFloat()

On a read image instruction, the memory component value is converted from f16 to f32. The
conversion must be exact for both normal and subnormal values. The infinity value must be converted
to the corresponding infinity value. It is implementation defined if NaN values are propagated or
payloads preserved (regardless of the profile specified) or if signaling NaNs are converted to quiet
NaNs (see 4.19.4. Not A Number (NaN) (page 111)). No invalid operation exception is generated if the
value is a signaling NaN.

On write image instructions, the access component value is converted from f32 to f16. It is
implementation defined whether near or zero rounding mode is used (see 4.19.2. Floating-Point
Rounding (page 109)). It is implementation defined if subnormal values resulting from the conversion
are flushed to zero. The infinity value must be converted to the corresponding infinity value. It is
implementation defined if NaN values are propagated or payloads preserved (regardless of the profile
specified) or if signaling NaNs are converted to quiet NaNs (see 4.19.4. Not A Number (NaN) (page
111)). No invalid operation exception is generated if the value is a signaling NaN. No inexact exception
is generated.

UnsignedClamp(upper)

The unsigned integer access component value is clamped to be in the unsigned integer memory
component value closed interval [0, upper].

On a read image instruction, the access component is set to the memory component value zero
extended to u32.

On write image instructions, the memory component value is set to:

memory_component = min(access_component, upper);

SignedClamp(lower, upper)

The signed integer access component value is clamped to be in the signed integer memory component
value closed interval [lower, upper].

On a read image instruction, the access component is set to the memory component value sign
extended to s32.

On write image instructions, the memory component value is set to:

memory_component = min(max(access_component, lower), upper);

202 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 203

UnsignedNormalize(scale)

A floating-point access component value in the closed interval [0.0, 1.0] is scaled to the unsigned
integer memory component value closed interval [0, scale], with values outside that range (including
infinity) being clamped to the memory component range and NaN values treated as 0.

On a read image instruction, the access component is set to:

access_component = min(max(float(memory_component) / float(scale), 0.0), 1.0);

This must be done with less than or equal to 1.5 ULP (see 4.19.6. Unit of Least Precision (ULP) (page
112)), with the additional requirements:

l If memory component is 0 must return 0.0.

l If memory component is scale then must return 1.0.

l Must return a value in the closed interval [0.0, 1.0].

On write image instructions, the memory component value is set to:

memory_component = min(max(int
neari

(access_component * float(scale)), 0), scale);

The conversion to integer uses neari rounding mode (see 5.19.4. Description of Integer Rounding
Modes (page 162)). The result must be in the closed interval of the precise result produced for the
access component value ±(0.6 / float(scale)). No invalid operation exception is generated if
the value is a signaling NaN.

No inexact exception is generated for either conversion.

SignedNormalize(scale)

A floating-point access component value in the closed interval [-1.0 to +1.0] is scaled to the signed
integer memory component value closed interval [-scale-1, +scale], with values outside that range
(including infinity) being clamped to the memory component range and NaN values treated as 0.

On a read image instruction, the access component is set to:

access_component = min(max(float(memory_component) / float(scale), -1.0), 1.0);

This must be done with less than or equal to 1.5 ULP, with the additional requirements:

l If memory component is -scale or -scale-1 then must return -1.0.

l If memory component is 0 must return 0.0.

l If memory component is scale then must return 1.0.

l Must return a value in the closed interval [-1.0, +1.0].

On write image instructions, the memory component value is set to:

memory_component = min(max(int
neari

(access_component * float(scale)), -scale - 1), scale);

The conversion to integer uses neari rounding mode (see 5.19.4. Description of Integer Rounding
Modes (page 162)). The result must be in the closed interval of the precise result produced for the
access component value ±(0.6 / float(scale)). No invalid operation exception is generated if
the value is a signaling NaN.

No inexact exception is generated for either conversion.

Chapter 7. Image Instructions 7.1 Images in HSAIL

Chapter 7. Image Instructions 7.1 Images in HSAIL

7.1.4.3 Bits Per Pixel (bpp)

Associated with each image format there is a number called the bits per pixel (bpp) which is the number of
bits needed to hold one element of an image. The bpp value is obtained by adding the size of each image
component plus any unused bits. The image format channel type specifies the component size, and the
channel order specifies the number of components. For example, if the channel order is rg (two
components per element) and if the channel type is half_float (16-bit) then the bpp value is 2*16 = 32
bits. See the bpp column of Table 7–4 (facing page).

7.1.5 Image Access Permission

The image access permissions refer to how an image can be accessed using image instructions. If the
access permissions of a specific image include:

l read-only, then image read instructions are allowed

l write-only, then write instructions are allowed

l read-write, then both read and write instructions are allowed

Not all combinations of image geometry, channel order and channel type are legal in HSAIL. Furthermore, of
the legal combinations, it is implementation defined what access permissions, if any, are supported by a
specific kernel agent. However, for every kernel agent that supports images, there is a minimal set of
access permissions that must be supported for specific combinations. The HSA runtime provides a query to
determine what access permissions, if any, are supported for a given combination on a particular kernel
agent. It is undefined if an image instruction requires an access permission not supported by the kernel
agent for a specific image. See Table 7–4 (facing page) for the legal combinations, and for the minimal
required access permissions:

l Y means the combination of image geometry, channel order, and channel type is legal. All other
combinations are not legal.

l ro means a kernel agent that supports images is required to support the combination for the read-
only access permission. Otherwise, it may optionally support it if legal.

l wo means a kernel agent that supports images is required to support the combination for the write-
only access permission. Otherwise, it may optionally support it if legal.

l rw means a kernel agent that supports images is required to support the combination for the read-
write access permission. Otherwise, it may optionally support it if legal.

204 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 205

Table 7–4 Channel Order, Channel Type, and Image Geometry Combination

Channel Order Channel Type Image Geometry bpp

Bits unorm snorm uint sint float
r 8 Y

(ro,wo,rw)
Y
(ro,wo)

Y
(ro,wo,rw)

Y
(ro,wo,rw)

1D, 2D, 3D, 1DA,
2DA, 1DB

8

16 Y (ro,wo) Y
(ro,wo)

Y
(ro,wo,rw)

Y
(ro,wo,rw)

Y
(ro,wo,rw)

16

32 Y
(ro,wo,rw)

Y
(ro,wo,rw)

Y
(ro,wo,rw)

32

rx, a 8 Y Y Y Y 8

16 Y Y Y Y Y 16

32 Y Y Y 32
rg 8, 8 Y (ro,wo) Y

(ro,wo)
Y (ro,wo) Y (ro,wo) 16

16, 16 Y (ro,wo) Y
(ro,wo)

Y (ro,wo) Y (ro,wo) Y (ro,wo) 32

32, 32 Y (ro,wo) Y (ro,wo) Y (ro,wo) 64

rgx, ra 8, 8 Y Y Y Y 16

16, 16 Y Y Y Y Y 32

32, 32 Y Y Y 64

rgb, rgbx 5, 6, 5 Y 16

5, 5, 5, 1 Y 16

10, 10, 10,
2

Y 32

rgba 8, 8, 8, 8 Y
(ro,wo,rw)

Y
(ro,wo)

Y
(ro,wo,rw)

Y
(ro,wo,rw)

32

16, 16, 16,
16

Y (ro,wo) Y
(ro,wo)

Y
(ro,wo,rw)

Y
(ro,wo,rw)

Y
(ro,wo,rw)

64

32, 32, 32,
32

Y
(ro,wo,rw)

Y
(ro,wo,rw)

Y
(ro,wo,rw)

128

bgra 8, 8, 8, 8 Y (ro,wo) Y Y Y 32

argb, abgr 8, 8, 8, 8 Y Y Y Y 32

srgb, srgbx 8, 8, 8 Y 24
srgba 8, 8, 8, 8 Y (ro) 32
sbgra 8, 8, 8, 8 Y 32

intensity,
luminance

8 Y Y 8

16 Y Y Y 16

32 Y 32
depth 16 Y (ro,wo) 2DDEPTH,

2DADEPTH
16

24 Y 24

32 Y (ro,wo) 32
depth_stencil 24, 8 Y 32

32 Y 64

Chapter 7. Image Instructions 7.1 Images in HSAIL

Chapter 7. Image Instructions 7.1 Images in HSAIL

7.1.6 Image Coordinate

Image instructions use image coordinates to specify which image element, and for image arrays, which
image layer, to access. An image geometry uses either one, two, or three coordinates, named x, y, and z.
These correspond to the width, height, depth, and array indices of the image geometry as specified in Table
7–1 (page 196).

The processing of each image coordinate is controlled by three properties:

l Coordinate normalization mode

l Coordinate addressing mode

l Coordinate filter mode

These properties are specified by a sampler when using an rdimage image instruction (see 7.1.8. Sampler
Creation and Sampler Handles (page 214)). For the ldimage and stimage image instructions, fixed
modes are used (see 7.1.6.3. Filter Mode (page 209)). The 1DB image geometry does not support samplers
and so cannot be used with the rdimage image instruction.

7.1.6.1 Coordinate Normalization Mode

The coordinate normalization mode controls how a coordinate value coord is converted to an
unnormalized coordinate that is used to access an image element. An unnormalized coordinate is a signed
value that includes a fractional part. (The pseudo code uses an unspecified floating-point type, but an
implementation may use a range reduced signed integer together with a fixed point fractional part.) The
conversion depends on the coordinate filter mode (see 7.1.6.3. Filter Mode (page 209)). A coordinate may
specify an image element that is outside the range of the corresponding image dimension: the coordinate
addressing mode controls how an out of range coordinate is processed (see 7.1.6.2. Addressing Mode
(facing page)).

The coordinate normalization mode can be:

unnormalized

An unnormalized coordinate specifies the index of the image element as either a u32, s32, or f32
data type value:

u32

This is always used for ldimage and stimage image instructions which only allow nearest
filter mode and unnormalized coordinate normalization mode.

s32

This can be used when the sampler for the rdimage image instruction specifies an
unnormalized coordinate normalization mode. For an array index coordinate the nearest
filter mode is always used regardless of what is specified by the sampler.

f32

This can be used when the sampler for the rdimage image instruction specifies an
unnormalized coordinate normalization mode. It is also used for the array index coordinate for
the rdimage image instruction when the normalized coordinate normalization mode is
specified by the sampler, in which case the nearest filter mode is always used regardless of what
is specified by the sampler. The coordinate is considered undefined if it has a NaN or Infinity value.

206 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 207

normalized

A normalized coordinate uses a scaled image element index such that the half-open interval [0.0, 1.0)
spans the image element index half-open interval of [0, coord

dim
) where coord

dim
is the size of the

corresponding dimension. It is specified as an f32 coordinate data type value. The value is multiplied
by coord

dim
to determine the image element index. This is used for non-array index coordinates when

the sampler for the rdimage image instruction specifies a normalized coordinate normalization
mode. The coordinate is considered undefined if it has a NaN or Infinity value.

A coordinate is converted as follows:

normalization(coord) {
switch (coord

is_array_index
? unnormalized : normalization_mode) {

case unnormalized:
switch (coord

data_type
) {

case u32:
switch (filter_mode) {
case nearest: return float(coord);
}

case s32:
switch (coord

is_array_index
? nearest : filter_mode) {

case nearest: return float(coord);
case linear: return float(coord) - 0.5;
}

case f32:
if (coord

is_nan
or coord

is_infinity
) return is_undefined;

switch (coord
is_array_index

? nearest : filter_mode) {
case nearest: return coord;
case linear: return coord - 0.5;
}

}
}

case normalized:
switch (coord

data_type
) {

case f32:
if (coord

is_nan
or coord

is_infinity
) return is_undefined;

switch (filter_mode) {
case nearest: return coord * coord

dim
;

case linear: return (coord * coord
dim

) - 0.5;
}

}
}

}

7.1.6.2 Addressing Mode

The coordinate addressing mode controls how out of range coordinates are processed:

undefined

The image instruction is undefined if the coordinate value is out of range.

If the coordinates are always known to be inside the image, then using undefined can result in
improved performance as it allows the implementation to use the most efficient addressing mode. Note
that linear filter mode can result in coordinates being accessed outside the image even if the
coordinates specified to the image instruction are inside the image, so using an addressing mode of
undefined may result in unpredictable values at the edge of the image.

clamp_to_edge

Out of range coordinates are clamped to the edge of the image.

Chapter 7. Image Instructions 7.1 Images in HSAIL

Chapter 7. Image Instructions 7.1 Images in HSAIL

clamp_to_border

If any coordinate used to access an image element is out of range then the border color associated with
the channel order of the image is used (see Table 7–2 (page 199)).

repeat

Out of range coordinates wrap around the image, making the image appear as repeated tiles. It is
undefined to specify repeat addressing mode unless the normalization mode is normalized.

mirrored_repeat

Out of range coordinates are wrapped in the opposite direction of the previous image repetition,
making the image appear as repeated tiles with every other tile a reflection. The results are undefined
if mirrored_repeat addressing mode is specified unless the normalization mode is normalized.

The undefined mode is always used for all coordinates of the stimage, and for non-array index
coordinates of the ldimage image instructions.

The clamp_to_edge mode is always used by the rdimage image instruction for an array index
coordinate regardless of the addressing mode specified by the sampler.

It is implementation defined whether the ldimage image instruction always uses the undefined or
clamp_to_edge mode for an array index coordinate.

NOTE: A future version of HSAIL may define the mode that must be used when the ambiguity in the OpenCL
Specification Version 2.0 has been resolved.

The conversions to an integer image element index for non-array index coordinates uses downi, whereas
neari is used for array index coordinates (see 5.19.4. Description of Integer Rounding Modes (page 162)).

The addressing mode is computed as follows:

addressing(coord) {
if (coord

is_undefined
) return is_undefined;

out_of_range = (int
downi

(coord) < 0) or (int
downi

(coord) > coord
dim

- 1);
if (coord

is_array_index
) {

if (out_of_range and
((operation == stimage) or
((operation == ldimage) and implementation_defined

is_ldimage_array_index_out_of_range_undefined
)

)) return is_undefined;
if ((operation == ldimage) and out_of_range and return is_undefined;
return max(0, min(int

neari
(coord), coord

dim
- 1));

}
if ((normalization_mode == unnormalized) and

((addressing_mode == repeat) or (addressing_mode == mirrored_repeat))
) return is_undefined;

if (not out_of_range) return int
downi

(coord);
switch(addressing_mode) {
case undefined: return is_undefined;
case clamp_to_edge: return int

downi
(max(0, min(coord, coord

dim
- 1)));

case clamp_to_border: return is_border;
case repeat:
tile = int

downi
(coord / coord

dim
);

return int
downi

(coord - (tile * coord
dim

));
case mirrored_repeat:
mirrored_coord = (coord < 0) ? (-coord - 1) : coord;
tile = int

downi
(mirrored_coord / coord

dim
);

mirrored_coord = int
downi

(mirrored_coord - (tile * coord
dim

));
if (tile & 1) {
mirrored_coord = (coord

dim
- 1) - mirrored_coord;

}

208 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 209

return mirrored_coord;
}

}

7.1.6.3 Filter Mode

The coordinate filter mode controls how image elements are selected:

nearest

Specifies that the image element selected is the one with the nearest integral index (in Manhattan
distance) that is less than or equal to the specified coordinates. This is also known as point sampling.

linear

Selects a line block of two elements (for 1D and 1DA images), a 2x2 square block of elements (for 2D,
2DA, 2DDEPTH and 2DADEPTH images), or a 2x2x2 cube block of elements (for 3D images) around the
input coordinate, and combines the selected values using linear interpolation. The result is formed as
the weighted average of the values in each element in the block. The weights are the fractional distance
from the element center to the coordinate. The weighted average is computed for each image element
component independently. Note that for image arrays, the weighted average is only computed within
the image layer selected by the array index coordinate, not between different image layers. linear
filter mode is not supported for the 1DB geometry.

The filter mode can result in more than one image element being accessed: these elements are known as
texels. In the pseudo code below, each texel is accessed using load_texel and store_texel which
take three image coordinate indices x_index, y_index, and z_index. These instructions ignore any
coordinate indices that are unused by the image geometry (see Table 7–1 (page 196)). Of the used
coordinate indices, if any are is_undefined, then the image instruction is undefined. For load_texel, if any
used coordinate index is is_border then the border color associated with the channel order of the image is
returned (see Table 7–2 (page 199)). Otherwise, load_texel returns the value of the image element with
the specified used coordinate indices and store_texel stores the value src to the image element with
the specified used coordinate indices.

load_texel converts each memory component of the image element loaded from the memory type to
the access type (including conversion from sRGB to linear RGB for the sRGB channel orders). Similarly,
store_texel converts each access component from the access type to the memory type (including
conversion from linear RGB to sRGB for the sRGB channel orders) before storing in the image element. See
Table 7–3 (page 201) and 7.1.4.1.2. Standard RGB (s-Form) Channel Orders (page 200).

load_texel and store_texel map between memory components and access components as shown
in Table 7–2 (page 199). If the image channel order has fewer than four memory components:

l load_texel returns the fixed value from Table 7–2 (page 199) for any missing memory
components

l store_texel ignores any access components that have no corresponding memory component

The coordinate properties used by each image instruction are:

l stimage always uses unnormalized normalization mode, undefined addressing mode, and
near filter mode.

Chapter 7. Image Instructions 7.1 Images in HSAIL

Chapter 7. Image Instructions 7.1 Images in HSAIL

l ldimage always uses unnormalized normalization mode, undefined addressing mode, and
near filter mode.

l rdimage uses the values for normalization mode, addressing mode, and filter mode specified by
the sampler operand (see 7.1.8. Sampler Creation and Sampler Handles (page 214)).

The filter mode is computed as follows:

nearest (stimage)

x_index = addressing(normalization(x));
y_index = addressing(normalization(y));
z_index = addressing(normalization(z));
store_texel(x_index, y_index, z_index, src);

nearest (rdimage, ldimage)

x_index = addressing(normalization(x));
y_index = addressing(normalization(y));
z_index = addressing(normalization(z));
return load_texel(x_index, y_index, z_index);

linear (rdimage)

x0_index = addressing(normalization(x));
x1_index = addressing(normalization(x) + 1);
x_frac = normalization(x) - floor(normalization(x));
y0_index = addressing(normalization(y));
y1_index = addressing(normalization(y) + 1);
y_frac = normalization(y) - floor(normalization(y));
z0_index = addressing(normalization(z));
z1_index = addressing(normalization(z) + 1);
z_frac = normalization(z) - floor(normalization(z));
switch (geometry) {
case 1d:
case 1da:
return (1 – x_fract) * load_texel(x0_index, y0_index, z0_index)

+ x_fract * load_texel(x1_index, y0_index, z0_index);
case 2d:
case 2da:
case 2ddepth:
case 2dadepth:
return (1 – x_fract) * (1 – y_fract) * load_texel(x0_index, y0_index, z0_index)

+ x_fract * (1 – y_fract) * load_texel(x1_index, y0_index, z0_index)
+ (1 – x_fract) * y_fract * load_texel(x0_index, y1_index, z0_index)
+ x_fract * y_fract * load_texel(x1_index, y1_index, z0_index);

case 3d:
return (1 – x_fract) * (1 – y_fract) * (1 – z_fract)

* load_texel(x0_index, y0_index, z0_index)
+ x_fract * (1 – y_fract) * (1 – z_fract)
* load_texel(x1_index, y0_index, z0_index)

+ (1 – x_fract) * y_fract * (1 – z_fract)
* load_texel(x0_index, y1_index, z0_index)

+ x_fract * y_fract * (1 – z_fract)
* load_texel(x1_index, y1_index, z0_index)

+ (1 – x_fract) * (1 – y_fract) * z_fract
* load_texel(x0_index, y0_index, z1_index)

+ x_fract * (1 – y_fract) * z_fract
* load_texel(x1_index, y0_index, z1_index)

+ (1 – x_fract) * y_fract * z_fract
* load_texel(x0_index, y1_index, z1_index)

+ x_fract * y_fract * z_fract
* load_texel(x1_index, y1_index, z1_index);

case 1db:

210 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 211

return not_supported;
}

If the coordinate normalization mode is unnormalized (whether u32, s32, or f32), the addressing mode
is undefined, clamp_to_edge or clamp_to_border and the filter mode is nearest, the image
element index must be computed with no loss of precision. For all other combinations, the precision of the
computations is implementation defined. To ensure a minimum precision, explicit instructions can be used
to convert to unnormalized coordinates, and to perform the equivalent of any linear filter mode using
component values accessed by image instructions that do guarantee a precision.

7.1.7 Image Creation and Image Handles

Each image has a fixed size. The size includes the number of elements for each image layer dimension and
number of image layers for image arrays:

l Width size: in elements for one, two and three dimensional image data geometries.

l Height size: in elements for two and three dimensional image data geometries.

l Depth size: in elements for three dimensional image data geometries.

l Array size: in number of image layers for image array geometries.

The HSA runtime can be used to query the image data size and alignment required for an image of a
specific size, geometry, format, and access permission on a specific agent. This size is implementation
dependent for each agent and may include additional padding between the image rows and slices. For
example, additional padding may ensure alignment that improves performance.

The row pitch is the size in bytes for a single row, including padding between rows, and must be greater
than or equal to the width * bpp/8. For 2D and 3D images, the slice pitch is the size of a single 2D slice,
including padding between slices, and must be greater than or equal to row_pitch * height.

The HSA runtime can be used to allocate image data of the appropriate size and alignment, that is
accessible to image operations executed on a specific agent using a specific access permission.

The HSA runtime can be used to create an opaque image handle by specifying:

l Image geometry

l Image size

l Image format

l Image access permission

l Agent

l Address of image data

An image handle representation is implementation dependent for each agent. The combinations of image
geometry, access permission, and format supported by an agent are implementation defined, but there is a
minimal set that every agent must support (see Table 7–4 (page 205)). The maximum image size supported
for an image geometry, and the maximum number of image handles that can exist at any one time for a
specific access permission, is implementation defined for each agent, but there are minimum limits that all
agents must support (see Appendix A. Limits (page 374)). An HSA runtime query is available to obtain the
maximum limits supported by an agent.

The HSA runtime can be used to destroy an image handle which reduces the number of created handles.
The results are undefined if an image handle is used after it has been destroyed.

Chapter 7. Image Instructions 7.1 Images in HSAIL

Chapter 7. Image Instructions 7.1 Images in HSAIL

It is implementation defined if the same image data layout is used for different access permissions to
images with the same image geometry, size and format on a specific agent. There is an HSA runtime query
to determine if the same data layout is used.

The results are undefined if multiple image handles are created to the same image data unless:

l The agent is the same.

l The image data was allocated using the HSA runtime such that it is accessible to the agent.

l The image geometry, size and format are the same. The one exception is that if the image format
channel type is an s-form it can be the corresponding non-s-form and vice versa (see 7.1.4.1.2.
Standard RGB (s-Form) Channel Orders (page 200)).

l The image access permission must also match unless the agent uses the same image data layout
for all image access permissions with the specified image geometry, size and format.

The HSA runtime provides operations to convert between a linear image data layout and the
implementation defined image data layout, and to copy and erase portions of the image data.

In HSAIL there are three opaque image handle types, roimg, woimg and rwimg (see Table 4–4 (page 101)
). These correspond to the three image access permissions (see 7.1.5. Image Access Permission (page
204)). See Table 7–5 (below).

l A read-only image handle (roimg) can only be used to read the image data.

l A write-only image handle (woimg) can only be used to write the image data.

l A read-write image handle (rwimg) can only be used to both read and write the image data.

Table 7–5 Image Handle Properties

Image Handle Type Image Access Permission Image Instructions
roimg ro rdimage , ldimage
woimg wo stimage

rwimg rw ldimage , stimage

The only access to the image data referenced by an image handle in a kernel dispatch is through the HSAIL
image instructions rdimage, ldimage and stimage, not through the memory instructions ld, st,
atomic, or atomicnoret. The results are undefined if an image handle is used that was created by the
HSA runtime with a different access permission than is required by the HSAIL type. It is undefined to use
HSAIL image instructions on a kernel agent for which the image handle was not created, or with an image
handle that has an access permission that is not supported by the kernel agent for the image's properties.
Different kernel agents may use different representations for image handles, and their image instructions
may not be able to access each other's image data allocations. Also see 7.1.10. Image Memory Model (page
218).

An image handle variable can be declared and defined:

l As a global or readonly segment variable declaration or definition, either inside or outside of a
function or kernel.

l As an arg segment variable definition in an arg block.

l As a function formal argument definition in the arg segment.

l As a kernel formal argument definition in the kernarg segment.

212 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 213

An image handle type always has a size of 8 bytes and a natural alignment of 8 bytes, but the format is
implementation dependent for each agent.

A variable definition in the global or readonly segment can have an initializer that defines the properties of
the image. For a global or readonly segment variable definition with the const qualifier, an initializer is
required. For a global or readonly segment variable without the const qualifier, an initializer is optional.
Since the representation of image handles and image data is agent specific, it is required that such
initialized variables have agent allocation. This ensures that each agent has its own allocation for the
variable that is initialized with an image handle for an image with the specified properties using the
representation appropriate for that agent. Readonly segment variables are implicitly agent allocation, but
the alloc(agent) qualifier is required for global segment variables. See 4.3.10. Declaration and
Definition Qualifiers (page 69).

An image handle type constant uses the typed constant notation (see 4.8.3. Typed Constants (page 87)): an
image handle type, followed by a parenthesized list containing pairs of keyword = value. The geometry
of the image and all the properties that apply to that geometry must be specified. The properties can be
specified in any order, with no duplications and no properties that do not apply to the specified image
geometry.

An image handle typed constant can be used in a variable initializer, but cannot be used in an immediate
source operand. The rules for using image handle typed constants are the same as other typed constants
(see 4.8.5. How Text Format Constants Are Converted to Bit String Constants (page 92)):

l When initializing an image handle type variable without an array dimension, an image handle typed
constant of the same type as the variable must be used.

l When initializing an image handle type variable with an array dimension, an array typed constant
must be used which has the same array element type as the variable, the same number of array
elements as the variable, and each array element the same image type as the variable array
element type.

l An aggregate constant that includes image typed constants can be used to initialize bit type array
variables. The aggregate constant must have the same byte size as the array variable.

The following is an example of image handle variable initializations:

alloc(agent) global_roimg &name0 = roimg(geometry = 3d,
width = 5, height = 4, depth = 6,
channel_type = unorm_int_101010,
channel_order = rgbx);

decl prog global_roimg &name1;
decl prog global_roimg &ArrayOfroimgs[10];
alloc(agent) global_woimg &name3 = woimg(geometry = 3d,

width = 5, height = 4, depth = 6,
channel_type = unorm_int_101010,
channel_order = rgbx);

decl prog global_rwimg &namedrwimg12;
decl prog global_rwimg &namedrwimg2;
decl prog global_rwimg &namedrwimg3;
decl prog global_rwimg &ArrayOfrwimgs[10];
alloc(agent) global_rwimg &namedrwimgWithInit[2] =

rwimg[](rwimg(geometry = 3d,
width = 5, height = 4, depth = 6,
channel_type = unorm_int_101010,
channel_order = rgbx),

rwimg(geometry = 2d,
width = 5, height = 4,
channel_type = unorm_short_555,

Chapter 7. Image Instructions 7.1 Images in HSAIL

Chapter 7. Image Instructions 7.1 Images in HSAIL

channel_order = rgb)
);

alloc(agent) global_b8 &namedStructInit[16] =
{ u32(4),
align(8),
rwimg(geometry = 2d,

width = 5, height = 4,
channel_type = unorm_short_555,
channel_order = rgb)

};

When a code object, that references a variable definition that has an initializer which includes any image
handle typed constants, is loaded into an executable for a kernel agent, images with the specified properties
are created for that kernel agent if it supports images. The kernel agent's agent allocation variable is
allocated and the image handles initialized to reference the corresponding images. The associated image
data is not initialized. When the executable is destroyed, the images, image data and image handles are
destroyed. See 4.2. Program, Code Object, and Executable (page 48).

The queryimage instruction can be used to query the properties of an image. See 7.5. Query Image and
Query Sampler Instructions (page 224).

7.1.8 Sampler Creation and Sampler Handles

Samplers are used to specify how to process image coordinates by the rdimage image instruction (see
7.1.6. Image Coordinate (page 206)).

The HSA runtime can be used to create an opaque sampler handle by specifying:

l Coordinate normalization mode

l Coordinate addressing mode

l Coordinate filter mode

A sampler handle representation is implementation dependent for each agent. The maximum number of
sampler handles that can exist at any one time is implementation defined for each agent, but there are
minimum limits that all agents must support (see Appendix A. Limits (page 374)). An HSA runtime query is
available to obtain the maximum limits supported by an agent.

The HSA runtime can be used to destroy a sampler handle which reduces the number of created handles. It
is undefined to use a sampler handle after it has been destroyed. See the HSA runtime.

In HSAIL there is an opaque sampler handle type samp (see Table 4–4 (page 101)). It is undefined to use
HSAIL sampler operations on a kernel agent for which the sampler handle was not created. Different kernel
agents may use different representations for sampler handles.

A sampler handle variable can be declared and defined:

l As a global or readonly segment variable declaration or definition inside or outside of a function or
kernel.

l As a arg segment variable definition in an arg block.

l As a function formal argument definition in the arg segment.

l As a kernel formal argument definition in the kernarg segment.

A sampler handle type always has a size of 8 bytes and a natural alignment of 8 bytes, but the format is
implementation dependent for each agent.

214 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 215

A sampler handle variable definition in the global or readonly segment can have an initializer that defines
the properties of the sampler. For a global or readonly segment variable definition with the const qualifier,
an initializer is required. For a global or readonly segment variable without the const qualifier, an initializer
is optional. Since the representation of sampler handles is agent specific, it is required that such initialized
variables have agent allocation. This ensures that each agent has its own allocation for the variable that is
initialized with a sampler handle for a sampler with the specified properties using the representation
appropriate for that agent. Readonly segment variables are implicitly agent allocation, but the alloc
(agent) qualifier is required for global segment variables. See 4.3.10. Declaration and Definition
Qualifiers (page 69).

A sampler handle type constant uses the typed constant notation (see 4.8.3. Typed Constants (page 87)):
samp, followed by a parenthesized list containing pairs of keyword = value. All the properties of a
sampler must be specified, in any order, with no duplications. It is an error if unnormalized normalization
mode is specified with an addressing mode of repeat or mirrored_repeat.

A sampler handle typed constant can be used in a variable initializer, but cannot be used in an immediate
source operand. The rules for using sampler handle typed constants are the same as other typed constants
(see 4.8.5. How Text Format Constants Are Converted to Bit String Constants (page 92)):

l When initializing a sampler handle type variable without an array dimension, a sampler handle typed
constant must be used.

l When initializing a sampler handle type variable with an array dimension, an array typed constant
must be used which has a sampler handle array element type, the same number of array elements
as the variable, and each array element a sampler handle typed constant.

l An aggregate constant that includes sampler typed constants can be used to initialize bit type array
variables. The aggregate constant must have the same byte size as the array variable.

The following is an example of sampler handle variable initializations:

alloc(agent) global_samp &y1 = samp(coord = normalized,
filter = nearest,
addressing = clamp_to_edge);

alloc(agent) global_samp &y2[2] =
samp[](samp(coord = unnormalized,

filter = nearest,
addressing = clamp_to_border),

samp(coord = normalized,
filter = linear,
addressing = mirrored_repeat)

);
alloc(agent) global_b8 &namedStructInit[16] =

{ u32(4),
align(8),
samp(coord = unnormalized,

filter = nearest,
addressing = clamp_to_border)

};

When a code object, that references a variable definition that has an initializer which includes any sampler
handle typed constants, is loaded into an executable for a kernel agent, samplers with the specified
properties are created for that kernel agent if it supports images. The kernel agent's agent allocation
variable is allocated and the sampler handles initialized to reference the corresponding samplers. When the
executable is destroyed, the samplers and sampler handles are destroyed. See 4.2. Program, Code Object,
and Executable (page 48).

Chapter 7. Image Instructions 7.1 Images in HSAIL

Chapter 7. Image Instructions 7.1 Images in HSAIL

For array image geometries (1DA, 2DA, 2DADEPTH), the array index coordinate ignores the sampler values
and is always processed using the unnormalized normalization mode, nearest filter mode, and an
addressing mode of clamp_to_edge but using neari instead of downi rounding mode (see 7.1.6.3.
Filter Mode (page 209)).

Samplers cannot be used with 1DB images which are not supported by the rdimage image instruction.

The querysampler instruction can be used to query the properties of a sampler. See 7.5. Query Image
and Query Sampler Instructions (page 224).

7.1.9 Using Image Instructions

The image instructions are listed in Table 7–6 (below).

l It is undefined to use an image instruction with an image geometry modifier that does not match the
geometry of the image. See Table 7–1 (page 196).

l It is undefined to use the image instructions with a combination of image handle type, coordinate
type, access type, image geometry and sampler properties not listed in Table 7–6 (below).

l It is undefined to use the image instructions on an image with a channel order, channel type and
image geometry not specified in Table 7–4 (page 205).

l It is undefined if the access type of the image instruction does not match the access type required by
the image's channel type specified in Table 7–4 (page 205).

Table 7–6 Image Instruction Combinations

Image
Instruction

Image
Handle
Type

Coordinate
Type

Access
Type

Sampler Image Geometry

coord filter addressing

rdimage roimg s32 u32,
s32,
f32

unnormalized nearest undefined,
clamp_to_edge,
clamp_to_
border

1D, 2D, 3D, 1DA, 2DA,
2DDEPTH, 2DADEPTH(1DA,
2DA, 2DADEPTH array
index coordinate always
treated as
unnormalized, clamp_
to_edge)

f32 u32,
s32

f32 nearest,
linear

u32,
s32

normalized nearest undefined,
clamp_to_edge,
clamp_to_

border, repeat,
mirrored_
repeat

f32 nearest,
linear

ldimage roimg,
rwing

u32 u32,
s32,
f32

Sampler not allowed (undefined if coordinate
not in range 0 to dimension size - 1)

1D, 2D, 3D, 1DA, 2DA,
1DB, 2DDEPTH,
2DADEPTHstimage woing,

rwing

To access the data in an image, an image handle is loaded into a d register using a load (ld) instruction
with a source type of roimg, woimg or rwimg. This does not load the image data; instead, it loads an
opaque handle that can be used to access the image data. It then uses this register as the source of the
read image (rdimage), load image (ldimage) or store image (stimage) instructions.

216 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 217

The differences between the rdimage instruction and the ldimage instruction are:

l rdimage takes a sampler and therefore supports additional coordinate processing modes.

l The value returned for out-of-bounds references for rdimage depends on the sampler.

A sampler is provided to the rdimage image instruction by using an opaque sampler handle which is
loaded into a d register with a source type of samp.

An image handler or sampler handle in a d register can be:

l Moved to another d register using the move (mov) instruction with the corresponding roimg,
woimg, rwimg or samp type.

l Stored to an arg segment variable using a store (st) instruction with the corresponding roimg,
woimg, rwimg or samp type. The arg segment variable must be:

o An input actual argument of a call instruction in an arg block.

o An output formal argument of a function in a function code block.

This allows image and sampler handles to be passed by value into a function, and returned by value
from a function.

A store instruction is not allowed on any other segment. This restriction ensures that the actual
image or sampler used by an image instruction can be statically determined if function calls are
inlined. Note, true bindless textures are not supported.

The results are undefined if the d register used in an image instruction does not contain a value that
ultimately originated from a global, readonly, or kernel argument variable. For image handles, the original
value type (roimg, woimg, or rwimg) must match the type of all instructions that use the value. For
sampler handles, the original variable and all instructions that use the value must specify the sampler
handle type (samp). These instructions include load (ld), store (st), move (mov), the image instructions
(rdimage, ldimage and stimage), and the image and sampler query instructions (queryimage and
querysampler). A function's arguments that are of type roimg, woimg, rwimg, or samp, must be
accessed in the arg scope of all calls that invoke it using load (ld) and store (st) instructions with the type
of the corresponding function argument.

The results are undefined if an image instruction (rdimage, ldimage, and stimage) or queryimage
instruction with an image handle value that is not compatible. The image handle is compatible if:

l It is currently created by the HSA runtime for the agent executing the kernel dispatch.

l The image handle was created with an image access permission that corresponds to the image
handle type (roimg, woimg, or rwimg) of the image instruction. See Table 7–5 (page 212).

It is undefined to use an rdimage instruction or samplerquery instruction with a sampler handle value
that is not currently created by the HSA runtime for the agent. See 7.1.8. Sampler Creation and Sampler
Handles (page 214).

The address of an image or sampler handle variable can be taken using the lda instruction. This allows
them to be passed by reference. The results are undefined if the address returned is used by a load or store
instruction that does not specify the same type as the original image handle or sampler handle. Note that
this is the address of a handle variable: in the case of an image handle, it is neither the address of the image
nor the address of the image data; and in the case of a sampler handle, it is not the address of the sampler.

Chapter 7. Image Instructions 7.1 Images in HSAIL

Chapter 7. Image Instructions 7.1 Images in HSAIL

7.1.10 Image Memory Model

This section maps the HSAIL image instructions to the HSA Image Memory Model defined in the HSA
Platform System Architecture Specification Version 1.0 section 2.15 Requirement: Images. It also provides an
overall informal definition of the memory model.

1. It is undefined to use an image or sampler handle that is invalid:

a. It is undefined to access an image using an image or sampler handle that was not created, or
was created and subsequently destroyed, by the HSA runtime.

b. It is undefined to use an image or sampler handle that was not created by the HSA runtime
for the kernel agent executing the kernel dispatch.

c. It is undefined to use an image handle with an HSAIL type that does not match the access
capability used when it was created by the HSA runtime. See Table 7–5 (page 212).

2. The image elements accessed by an rdimage instruction with a sampler with a linear filter mode
includes all locations accessed to perform the weighted average (see 7.1.6.3. Filter Mode (page
209)).

3. Within a single kernel dispatch:

a. It is undefined to use multiple image handles that reference the same image data to access
the same image elements unless all accesses are reads.

b. It is undefined to access the same image element using both image instructions (which use
the image segment) and memory instructions using the global segment, unless all accesses
are reads.

4. Within a single work-item:

a. It is undefined to read the same image element that has been written, without the execution
of an intervening imagefence instruction (see 6.9. Memory Fence (memfence) Instruction
(page 192)).

5. Between different work-items in the same work-group:

a. It is undefined for work-item A to read or write the same image element that has been written
by work-item B in the same work-group, without B executing an imagefence instruction
after the write, followed by a barrier or wavebarrier that both A and B participate,
followed by A executing an imagefence before the read (see 7.6. Image Fence
(imagefence) Instruction (page 225)).

b. An imagefence instruction cannot be reordered across a barrier or wavebarrier in
either direction.

c. An imagefence executed by work-item A that is ordered before a barrier or
wavebarrier will be ordered before any acquire memfence that is ordered after the
barrier or wavebarrier that both A and B participate, in work-item B, provided A is a
member of the scope instance of the memfence.

d. A release memfence executed by work-item A that is ordered before a barrier or
wavebarrier will be ordered before any imagefence that is ordered after the barrier
or wavebarrier that both A and B participate, in work-item B, provided B is a member of
the scope instance of the memfence.

218 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 219

6. Between different work-items in different work-groups of the same kernel dispatch:

a. It is undefined for work-item A to read or write the same image element that has been written
by work-item B in a different work-group. The widest memory scope that image elements can
be shared is work-group

7. Between different kernel dispatches or agents:

a. It is undefined to use the same, or different image handles that reference the same image
data, to access the same image elements unless all accesses are reads, or there is
intervening synchronization using User Mode Queue packet memory fences (see HSA
Platform System Architecture Specification Version 1.0 section 2.9.1 Packet header). Image data
sharing between different kernel dispatches and other agents is only at kernel dispatch
granularity. The packet fences must specify correctly paired release and acquire, and have
matching memory scopes of which both are members.

b. The HSA runtime image instructions implicitly perform an acquire when they start and a
release before they report completion at system memory scope.

c. The image segment and global segment are only made coherent at kernel dispatch
granularity using the User Mode Queue packet fences.

8. Any access to image data using the global segment must use acquire and release memory ordering
at an appropriate memory scope in order to allow sharing. See 6.2. Memory Model (page 169).

7.2 Read Image (rdimage) Instruction
The read image (rdimage) instruction uses image coordinates together with a sampler to perform an
image memory lookup.

7.2.1 Syntax

Table 7–7 Syntax for Read Image Instruction

Opcode and Modifiers Operands
rdimage_v4_1d_equiv(n)_destType_
imageType_coordType

(destR, destG, destB, destA), image, sampler, coordWidth

rdimage_v4_2d_equiv(n)_destType_
imageType_coordType

(destR, destG, destB, destA), image, sampler, (coordWidth,
coordHeight)

rdimage_v4_3d_equiv(n)_destType_
imageType_coordType

(destR, destG, destB, destA), image, sampler, (coordWidth,
coordHeight, coordDepth)

rdimage_v4_1da_equiv(n)_destType_
imageType_coordType

(destR, destG, destB, destA), image, sampler, (coordWidth,
coordArrayIndex)

rdimage_v4_2da_equiv(n)_destType_
imageType_coordType

(destR, destG, destB, destA), image, sampler, (coordWidth,
coordHeight, coordArrayIndex)

rdimage_2ddepth_equiv(n)_destType_
imageType_coordType

destR, image, sampler, (coordWidth, coordHeight)

rdimage_2dadepth_equiv(n)_destType_
imageType_coordType

destR, image, sampler, (coordWidth, coordHeight,
coordArrayIndex)

Explanation of Modifiers

v4: If present, specifies the instruction returns 4 components, otherwise only 1 component is returned.

Chapter 7. Image Instructions 7.2 Read Image (rdimage) Instruction

Chapter 7. Image Instructions 7.2 Read Image (rdimage) Instruction

Explanation of Modifiers

1d, 2d, 3d, 1da, 2da, 2ddepth, 2dadepth: Image geometry. Specifies the number and meaning of coordinates
required to access an image element. Can be 1d (width); 2d or 2ddepth (width and height); 3d (width, height, and
depth); 1da (width and array index); or 2da or 2dadepth (width, height and array index). 1db is not supported. See
7.1.3. Image Geometry (page 196).

equiv(n): Optional: n is an equivalence class. Used to specify the equivalence class of the image data memory
locations being accessed. If omitted, class 0 is used, which indicates that any memory location may be aliased. See
6.1.4. Equivalence Classes (page 168).

destType: Destination type: u32, s32, or f32. See Table 4–2 (page 99).

imageType: Image object type: roimg. See Table 4–4 (page 101).

coordType: Source coordinate element type: s32 or f32. See Table 4–2 (page 99).

Explanation of Operands (see 4.16. Operands (page 104))

destR, destG, destB, destA: Destination. Must be an s register.

image: A source operand d register that contains a value of an image object of type imageType. See 7.1.7. Image
Creation and Image Handles (page 211) and 7.1.9. Using Image Instructions (page 216).

sampler: A source operand d register that contains a value of a sampler object. It is always of type samp. See 7.1.8.
Sampler Creation and Sampler Handles (page 214) and 7.1.9. Using Image Instructions (page 216).

coordWidth, coordHeight, coordDepth, coordArrayIndex: A source s register or immediate value of type
coordType that specifies the coordinates being read.

Exceptions (see Chapter 12. Exceptions (page 269))

Invalid address exceptions are allowed. May generate a memory exception if image data is unaligned.

For BRIG syntax, see 18.7.3. BRIG Syntax for Image Instructions (page 355).

Description

The read image (rdimage) instruction performs an image memory lookup using image coordinates. The
instruction loads data from a read-only image, specified by source operand image at coordinates given by
source operands coordWidth, coordHeight, coordDepth, and coordArrayIndex, into destination
operands destR, destG, destB, and destA. A sampler specified by source operand sampler defines
how to process the read.

rdimage used with integer coordinates has restrictions on the sampler:

l coord must be unnormalized.

l filter must be nearest.

l The boundary mode must be undefined, clamp_to_edge or clamp_to_border.

1DB images are not supported.

Examples
ld_global_roimg $d1, [&roimg1];
ld_kernarg_roimg $d2, [%roimg2];
ld_readonly_samp $d3, [&samp1];
rdimage_v4_1d_equiv(12)_s32_roimg_f32 ($s0, $s1, $s5, $s3), $d1, $d3, $s6;
rdimage_v4_2d_s32_roimg_f32 ($s0, $s1, $s3, $s4), $d2, $d3, ($s6, $s9);
rdimage_v4_3d_s32_roimg_f32 ($s0, $s1, $s3, $s4), $d2, $d3, ($s6, $s9, $s2);
rdimage_v4_1da_s32_roimg_f32 ($s0, $s1, $s2, $s3), $d1, $d3, ($s6, $s7);
rdimage_v4_2da_s32_roimg_f32 ($s0, $s1, $s3, $s4), $d1, $d3, ($s6, $s9, $s12);

220 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 221

rdimage_2ddepth_s32_roimg_f32 $s0, $d2, $d3, ($s6, $s9);
rdimage_2dadepth_s32_roimg_f32 $s0, $d2, $d3, ($s6, $s9, $s10);

7.3 Load Image (ldimage) Instruction
The load image (ldimage) instruction uses image coordinates to load from image memory.

7.3.1 Syntax

Table 7–8 Syntax for Load Image Instruction

Opcode and Modifiers Operands
ldimage_v4_1d_equiv(n)_destType_
imageType_coordType

(destR, destG, destB, destA), image, coordWidth

ldimage_v4_2d_equiv(n)_destType_
imageType_coordType

(destR, destG, destB, destA), image, (coordWidth,
coordHeight)

ldimage_v4_3d_equiv(n)_destType_
imageType_coordType

(destR, destG, destB, destA), image, (coordWidth,
coordHeight, coordDepth)

ldimage_v4_1da_equiv(n)_destType_
imageType_coordType

(destR, destG, destB, destA), image, (coordWidth,
coordArrayIndex)

ldimage_v4_2da_equiv(n)_destType_
imageType_coordType

(destR, destG, destB, destA), image, (coordWidth,
coordHeight, coordArrayIndex)

ldimage_v4_1db_equiv(n)_destType_
imageType_coordType

(destR, destG, destB, destA), image, coordByteIndex

ldimage_2ddepth_equiv(n)_destType_
imageType_coordType

destR, image, (coordWidth, coordHeight)

ldimage_2dadepth_equiv(n)_destType_
imageType_coordType

destR, image, (coordWidth, coordHeight, coordArrayIndex)

Explanation of Modifiers

v4: If present, specifies the instruction returns 4 components, otherwise only 1 component is returned.

1d, 2d, 3d, 1da, 2da, 1db, 2ddepth, 2dadepth: Image geometry. Specifies the number and meaning of coordinates
required to access an image element. Can be 1d or 1db (width); 2d or 2ddepth (width and height); 3d (width, height,
and depth); 1da (width and array index); or 2da or 2dadepth (width, height and array index). See 7.1.3. Image
Geometry (page 196).

equiv(n): Optional: n is an equivalence class. Used to specify the equivalence class of the image data memory
locations being accessed. If omitted, class 0 is used, which indicates that any memory location may be aliased. See
6.1.4. Equivalence Classes (page 168).

destType: Destination type: u32, s32, or f32. See Table 4–2 (page 99).

imageType: Image object type: roimg, rwimg. See Table 4–4 (page 101).

coordType: Source coordinate element type: u32. See Table 4–2 (page 99).

Explanation of Operands (see 4.16. Operands (page 104))

destR, destG, destB, destA: Destination. Must be an s register.

image: A source operand d register that contains a value of an image object of type imageType. See 7.1.7. Image
Creation and Image Handles (page 211) and 7.1.9. Using Image Instructions (page 216).

coordWidth, coordHeight, coordDepth, coordArrayIndex: A source s register or immediate value of type
coordType that specifies the coordinates being read.

Exceptions (see Chapter 12. Exceptions (page 269))

Invalid address exceptions are allowed. May generate a memory exception if image data is unaligned.

For BRIG syntax, see 18.7.3. BRIG Syntax for Image Instructions (page 355).

Chapter 7. Image Instructions 7.3 Load Image (ldimage) Instruction

Chapter 7. Image Instructions 7.4 Store Image (stimage) Instruction

Description

The load image (ldimage) instruction loads from image memory using image coordinates. The instruction
loads data from a read-write or read-only image, specified by source operand image at integer coordinates
given by source operands coordWidth, coordHeight, coordDepth, and coordArrayIndex, into
destination operands destR, destG, destB, and destA.

While ldimage does not have a sampler, it works as though there is a sampler with coord =
unnormalized, filter = nearest and address_mode = undefined. The results are undefined
if a coordinate is out of bounds (that is, greater than the dimension of the image or less than 0).

The differences between the ldimage instruction and the rdimage instruction are:

l rdimage takes a sampler and therefore supports additional modes.

l The value returned if a coordinate is out of bounds (that is, greater than the dimension of the image
or less than 0) for rdimage depends on the sampler; for ldimage it is undefined.

For all geometries, coordinates are in elements.

Examples
ld_global_rwimg $d1, [&rwimg1];
ld_kernarg_roimg $d2, [%roimg2];
ldimage_v4_1d_equiv(12)_f32_rwimg_u32 ($s1, $s2, $s3, $s4), $d1, $s5;
ldimage_v4_2d_f32_rwimg_u32 ($s1, $s2, $s3, $s4), $d1, ($s5, $s6);
ldimage_v4_3d_f32_rwimg_u32 ($s1, $s2, $s3, $s4), $d1, ($s5, $s6, $s7);
ldimage_v4_1da_f32_rwimg_u32 ($s1, $s2, $s3, $s4), $d1, ($s5, $s6);
ldimage_v4_2da_f32_roimg_u32 ($s1, $s2, $s3, $s4), $d2, ($s5, $s6, $s7);
ldimage_v4_1db_f32_roimg_u32 ($s1, $s2, $s3, $s4), $d2, $s5;
ldimage_2ddepth_f32_rwimg_u32 $s1, $d1, ($s5, $s6);
ldimage_2dadepth_f32_rwimg_u32 $s1, $d1, ($s5, $s6, $s7);

7.4 Store Image (stimage) Instruction
The store image (stimage) instruction uses image coordinates to store to image memory.

7.4.1 Syntax

Table 7–9 Syntax for Store Image Instruction

Opcode and Modifiers Operands
stimage_v4_1d_equiv(n)_srcType_
imageType_coordType

(srcR, srcG, srcB, srcA), image, coordWidth

stimage_v4_2d_equiv(n)_srcType_
imageType_coordType

(srcR, srcG, srcB, srcA), image, (coordWidth,
coordHeight)

stimage_v4_3d_equiv(n)_srcType_
imageType_coordType

(srcR, srcG, srcB, srcA), image, (coordWidth,
coordHeight, coordDepth)

stimage_v4_1da_equiv(n)_srcType_
imageType_coordType

(srcR, srcG, srcB, srcA), image, (coordWidth,
coordArrayIndex)

stimage_v4_2da_equiv(n)_srcType_
imageType_coordType

(srcR, srcG, srcB, srcA), image, (coordWidth,
coordHeight, coordArrayIndex)

stimage_v4_1db_equiv(n)_srcType_
imageType_coordType

(srcR, srcG, srcB, srcA), image, coordArrayIndex

stimage_2ddepth_equiv(n)_srcType_
imageType_coordType

srcR, image, (coordWidth, coordHeight)

stimage_2dadepth_equiv(n)_srcType_
imageType_coordType

srcR, image, (coordWidth, coordHeight, coordArrayIndex)

222 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 223

Explanation of Modifiers

v4: If present, specifies the instruction takes 4 components, otherwise only 1 component is taken.

1d, 2d, 3d, 1da, 2da, 1db, 2ddepth, 2dadepth: Image geometry. Specifies the number and meaning of coordinates
required to access an image element. Can be 1d or 1db (width); 2d or 2ddepth (width and height); 3d (width, height,
and depth); 1da (width and array index); or 2da or 2dadepth (width, height and array index). See 7.1.3. Image
Geometry (page 196).

equiv(n): Optional: n is an equivalence class. Used to specify the equivalence class of the image data memory
locations being accessed. If omitted, class 0 is used, which indicates that any memory location may be aliased. See
6.1.4. Equivalence Classes (page 168).

srcType: Source type: u32, s32, or f32. See Table 4–2 (page 99).

imageType: Image object type: woimg, rwimg.See Table 4–4 (page 101).

coordType: Source coordinate element type: u32. See Table 4–2 (page 99).

Explanation of Operands (see 4.16. Operands (page 104))

srcR, srcG, srcB, srcA: Source. Can be a register or immediate value.

image: A source operand d register that contains a value of an image object of type imageType. See 7.1.7. Image
Creation and Image Handles (page 211) and 7.1.9. Using Image Instructions (page 216).

coordWidth, coordHeight, coordDepth, coordArrayIndex: A source s register or immediate value of type
coordType that specifies the coordinates being read.

Exceptions (see Chapter 12. Exceptions (page 269))

Invalid address exceptions are allowed. May generate a memory exception if image data is unaligned.

For BRIG syntax, see 18.7.3. BRIG Syntax for Image Instructions (page 355).

Description

The store image (stimage) instruction stores to image memory using image coordinates. The instruction
stores data specified by source operands srcR, srcG, srcB, and srcA to a write-only or read-write image
specified by source operand image at integer coordinates given by source operands coordWidth,
coordHeight, coordDepth, coordArrayIndex, and coordByteIndex.

It is undefined to use a coordinate that is out of bounds (that is, greater than the dimension of the image or
less than 0).

The source elements are interpreted left-to-right as r, g, b, and a components of the image format. These
elements are written to the corresponding components of the image element. Source elements that do not
occur in the image element are ignored.

For example, an image format of r has only one component in each element, so only source operand srcR
is stored.

For all geometries, coordinates are in elements.

Type conversions are performed as needed between the source data type specified by srcType (s32,
u32, or f32) and the destination image data element type and format.

Examples
ld_global_woimg $d1, [&roimg1];
ld_global_rwimg $d2, [&rwimg1];
stimage_v4_1d_equiv(12)_f32_woimg_u32 ($s1, $s2, $s3, $s4), $d1, $s5;
stimage_v4_2d_f32_woimg_u32 ($s1, $s2, $s3, $s4), $d1, ($s5, $s6);

Chapter 7. Image Instructions 7.4 Store Image (stimage) Instruction

Chapter 7. Image Instructions 7.5 Query Image and Query Sampler Instructions

stimage_v4_3d_f32_woimg_u32 ($s1, $s2, $s3, $s4), $d1, ($s5, $s6, $s7);
stimage_v4_1da_f32_rwimg_u32 ($s1, $s2, $s3, $s4), $d2, ($s5, $s6);
stimage_v4_2da_f32_rwimg_u32 ($s1, $s2, $s3, $s4), $d2, ($s5, $s6, $s7);
stimage_v4_1db_f32_rwimg_u32 ($s1, $s2, $s3, $s4), $d2, $s5;
stimage_2ddepth_f32_rwimg_u32 $s1, $d2, ($s5, $s6);
stimage_2dadepth_f32_rwimg_u32 $s1, $d2, ($s5, $s6, $s7);
st_arg_rwimg $d2, [%rwimg_arg1];

7.5 Query Image and Query Sampler Instructions
The query image and query sampler instructions query an attribute of an image object or a sampler object.

7.5.1 Syntax

Table 7–10 Syntax for Query Image and Query Sampler Instructions

Opcode Operands
queryimage_geometry_imageProperty_destType_imageType dest, image

querysampler_samplerProperty_destType dest, sampler

Explanation of Modifiers

geometry: Image geometry: 1d, 2d, 3d, 1da, 2da, 1db, 2ddepth, 2dadepth. See 7.1.3. Image Geometry (page 196).

imageProperty: Image property: width, height, depth, array, channelorder, channeltype. height only allowed if
geometry is 2D, 3D, 2DA, 2DDEPTH or 2DADEPTH; depth only allowed if geometry is 3D; array only allowed if
geometry is 1DA, 2DA or 2DADEPTH. See Table 7–11 (below).

samplerProperty: Sampler property: addressing, coord, filter. See Table 7–12 (facing page).

destType: Destination type: u32. See Table 4–2 (page 99).

imageType: Image object type: roimg, woimg, rwimg. See Table 4–4 (page 101).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination register of type u32.

image: A source operand d register that contains a value of an image object of type imageType. See 7.1.7. Image
Creation and Image Handles (page 211) and 7.1.9. Using Image Instructions (page 216).

sampler: A source operand d register that contains a value of a sampler object. It is always of type samp. See 7.1.8.
Sampler Creation and Sampler Handles (page 214) and 7.1.9. Using Image Instructions (page 216).

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.3. BRIG Syntax for Image Instructions (page 355).

7.5.2 Description

Each query returns a 32-bit value giving a property of the source:

Table 7–11 Explanation of imagePropertymodifier

imageProperty Returns
width Image width in elements. Allowed for all image geometries.
height Image height in elements. Only allowed for 2D, 3D, 2DA, 2DDEPTH or 2DADEPTH image geometries.
depth Image depth in elements. Only allowed for 3D image geometry.

224 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 225

imageProperty Returns
array The number of image layers. Only allowed for 1DA, 2DA or 2DADEPTH image geometries.
channelorder An image channel order property encoded as an integer according to 18.3.11.

BrigImageChannelOrder (page 304).
channeltype An image channel type property encoded as an integer according to 18.3.12.

BrigImageChannelType (page 304).

Table 7–12 Explanation of samplerPropertymodifier

samplerProperty Returns
addressing A sampler addressing mode property encoded as an integer according to 18.3.27.

BrigSamplerAddressing (page 312). If undefined was specified when the sampler was initialized,
it is implementation defined what addressing mode is returned. It may be any of the addressing
modes, including undefined.

coord A sampler coordinate property encoded as an integer according to 18.3.28.
BrigSamplerCoordNormalization (page 312).

filter A sampler filter property encoded as an integer according to 18.3.29. BrigSamplerFilter (page
313).

Examples
ld_global_rwimg $d1, [&rwimg1];
ld_kernarg_roimg $d2, [%roimg2];
ld_kernarg_woimg $d3, [%woimg2];
ld_readonly_samp $d4, [&samp1];
queryimage_1d_width_u32_rwimg $s1, $d1;
queryimage_2d_height_u32_rwimg $s0, $d1;
queryimage_3d_depth_u32_rwimg $s0, $d1;
queryimage_1da_array_u32_roimg $s1, $d2;
queryimage_2da_channelorder_u32_roimg $s0, $d2;
queryimage_1db_channeltype_u32_roimg $s0, $d2;
queryimage_2ddepth_channeltype_u32_woimg $s0, $d3;
querysampler_addressing_u32 $s0, $d4;
querysampler_coord_u32 $s0, $d4;
querysampler_filter_u32 $s0, $d4;

7.6 Image Fence (imagefence) Instruction
The image fence (imagefence) instruction synchronizes image operations. See 6.2. Memory Model (page
169) and 7.1.10. Image Memory Model (page 218).

7.6.1 Syntax

Table 7–13 Syntax for imagefence Instruction

Opcode and Modifiers
imagefence

Explanation of Modifiers

No modifiers are allowed.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.3. BRIG Syntax for Image Instructions (page 355).

Chapter 7. Image Instructions 7.6 Image Fence (imagefence) Instruction

Chapter 7. Image Instructions 7.6 Image Fence (imagefence) Instruction

Description

The imagefence instruction allows image data access and updates to be synchronized both within a
single work-item, and, when combined with an execution barrier, between work-items in the same
wavefront or work-group. In addition, when combined with memfence and execution barriers it can
synchronize both image instructions and global and group segment memory instructions. Execution is
undefined when memory is accessed without synchronization.

To make the image writes performed by a single work-item visible to the image reads the same work-item
performs, it must execute an imagefence between the image write and image read instructions. For
example:

stimage_v4_1d_f32_rwimg_f32 ($s1, $s2, $s3, $s4), $d1, $s4;
imagefence; // Will ensure image data stored by stimage is visible to

// subsequently ldimage in same work-item.
ldimage_v4_1d_f32_rwimg_f32 ($s5, $s6, $s7, $s8), $d1, $s4;

To make the image writes performed by work-item A visible to the image reads performed by work-item B,
it is necessary for A to execute an imagefence after the image write, followed by a barrier or
wavebarrier that both A and B participate in; and for B to execute an imagefence after the barrier
or wavebarrier but before the image reads. For example:

stimage_v4_1d_f32_rwimg_f32 ($s1, $s2, $s3, $s4), $d1, $s4;
imagefence;
barrier;
imagefence;
ldimage_v4_1d_f32_rwimg_f32 ($s5, $s6, $s7, $s8), $d1, $s4;

Note that this is not enough to ensure an ordering between the image instructions and memory instructions
performed by A and B to the global or group segment. To ensure that ordering, it is also necessary for A to
perform a release memfence after the memory instructions but before the barrier or wavebarrier,
and for B for perform an acquire memfence after the barrier or wavebarrier and before the memory
instructions. A and B must both be inclusive members of the scope instances specified by the memfence
instructions. For example:

imagefence;
memfence_rel_wg;
barrier;
memfence_acq_wg;
imagefence;

Note that an fbarrier cannot be used to achieve synchronization in the current version of HSAIL.

It is not possible to synchronize at a wider scope than work-group except at kernel dispatch granularity by
using User Mode Queue packet memory fences.

The imagefence instruction can be used in conditional code.

See 7.1.10. Image Memory Model (page 218).

Examples
imagefence;

226 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 227

CHAPTER 8.
Branch Instructions

Like many programming languages, HSAIL supports branch instructions that can alter the control flow.

8.1 Syntax
Table 8–1 Syntax for Branch Instructions

Opcode and Modifier Operands
br label

cbr_width_b1 src, label

sbr_width_uLength src [labelList]

Explanation of Modifiers

width: Optional: width(n), width(WAVESIZE), or width(all). The width modifier specifies the result uniformity of
the target for branches. All active work-items in the same slice are guaranteed to branch to the same target. If the
width modifier is omitted, it defaults to width(1), indicating each active work-item can branch independently. See
2.12.2. Using the Width Modifier with Control Transfer Instructions (page 44).

Length: 32, 64.

Explanation of Operands (see 4.16. Operands (page 104))

src: Source. Can be a register or immediate value.

label: Must be an identifier of a label in the same code block as the branch instruction.

labelList: Must be a comma-separated list of one or more label identifiers that are all in the same code block as
the branch instruction.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.4. BRIG Syntax for Branch Instructions (page 356).

8.2 Description
The label or labels specified in the branch instruction must be in the code block, which includes any nested
arg blocks, of the kernel or function containing the branch instruction. However, the label definition can
either be lexically before or after the branch instruction. For restrictions on using branches with respect to
arg blocks see 10.2. Function Call Argument Passing (page 244).

br

An unconditional branch which transfers control to the label specified.

cbr

A conditional branch which transfers execution to the label specified if the condition value in src is true
(non-zero), otherwise will fall through and execution will continue with the next instruction after the cbr
instruction. src must be of type b1.

Chapter 8. Branch Instructions 8.1 Syntax

Chapter 8. Branch Instructions 8.2 Description

Since a conditional branch can potentially transfer to more than one target, it can result in control flow
divergence which can introduce a performance issue. The width modifier can be used to specify
properties about the control flow divergence that may result in the finalizer producing more efficient
code. See 2.12. Divergent Control Flow (page 41).

sbr

A switch branch which transfers control to the label in the labelList that corresponds to the index
value in src. If the index value is 0 then the first label is selected, if 1 then the second label, and so
forth. The results are undefined if the number of labels in labelList is less than or equal to the index
value. src can either be of type u32 or u64.

Since a switch branch can potentially transfer to more than one target, it can result in control flow
divergence which can introduce a performance issue. The width modifier can be used to specify
properties about the control flow divergence that may result in the finalizer producing more efficient
code. See 2.12. Divergent Control Flow (page 41).

It is implementation defined how a switch branch is finalized to machine instructions. For example: by a
cascade of compare and conditional branches; by an indirect branch through a jump table; or a
combination of these approaches. The performance of switch branches can therefore potentially be
slow for long label lists.

Examples
br @label1;

cbr_b1 $c0, @label1;
cbr_width(2)_b1 $c0, @label2;
cbr_width(all)_b1 $c0, @label3;

sbr_u32 $s1 [@label1, @label2, @label3];
sbr_width(2)_u32 $s1 [@label1, @label2, @label3];
sbr_width(all)_u32 $s1 [@label1, @label2, @label3];

// ...
@label1:
// ...
@label2:
// ...
@label3:
// ...

228 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 229

CHAPTER 9.
Parallel Synchronization and Communication Instructions

This chapter describes instructions used for cross work-item communication.

9.1 Barrier Instructions
The barrier and wavebarrier instructions are used to synchronize work-item execution in a work-
group and wavefront respectively.

9.1.1 Syntax

Table 9–1 Syntax for Barrier Instructions

Opcode and Modifiers
barrier_width

wavebarrier

Explanation of Modifiers

width: Optional: width(n), width(WAVESIZE), or width(all). Used to specify the communication uniformity among
the work-items of a work-group. If omitted, defaults to width(all). See the Description below.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.5. BRIG Syntax for Parallel Synchronization and Communication Instructions (page
356).

9.1.2 Description

The barrier and wavebarrier instructions are execution barriers. See 9.3. Execution Barrier (page
238).

The barrier instruction supports the width modifier:

width

A barrier instruction can have an optional width modifier that can specify the communication
uniformity (see 2.12. Divergent Control Flow (page 41)). If omitted it defaults to width(all). For
example, a barrier_width(n) can be performed only between the n work-items in the same slice.
There is no requirement for the work-items in other slices of the same work-group to participate in the
barrier at the same time, and no guarantees are made in this respect, provided all work-items of the
same work-group do eventually execute it (due to the work-group execution uniform requirement).

If an implementation has a wavefront size that is greater than or equal to n, it is free to optimize the
code generated for the barrier when the gang-scheduled execution of work-items in wavefronts will
ensure execution synchronization of the communicating work-items. However, even if the barrier is
optimized, synchronizing atomic memory instructions cannot be moved over the barrier location.

Chapter 9. Parallel Synchronization andCommunication Instructions 9.1 Barrier Instructions

Chapter 9. Parallel Synchronization andCommunication Instructions 9.2 Fine-Grain Barrier (fbarrier) Instructions

An implementation is allowed to ignore the width modifier and always synchronize execution with all
work-items of the work-group.

See also 9.2. Fine-Grain Barrier (fbarrier) Instructions (below).

Examples
barrier;
barrier_width(64);
barrier_width(WAVESIZE);
wavebarrier;

9.2 Fine-Grain Barrier (fbarrier) Instructions

9.2.1 Overview: What Is an Fbarrier?

In certain situations, barrier synchronization (which is synchronization over all work-items in a work-group)
is too coarse. Applications might find it convenient to synchronize at a finer level, over a subset of the work-
items within the work-group. A fine-grain barrier object called an fbarrier is needed for this subset. The
work-items in the subset are said to be members of the fbarrier.

An fbarrier is defined using the fbarrier statement which can appear either in module scope or in
function scope (see 4.3.9. Fbarrier (page 68)). For example:

fbarrier &fb;

Fbarriers are used to synchronize only between work-items within a work-group that are wavefront uniform.
As such, an fbarrier has work-group persistence (see 2.8.4. Memory Segment Access Rules (page 36)): it
has the same allocation and persistence rules as a group segment variable. The naming and visibility of an
fbarrier follows the same rules as variables.

An fbarrier is an opaque entity and its size and representation are implementation defined. It is also
implementation defined in which kind of memory fbarriers are allocated. For example, an fbarrier can use
dedicated hardware, or can use memory in the group or global segments. An implementation is allowed to
limit the number of fbarriers it supports, but must support a minimum of 32 per work-group. The total
number of fbarriers supported by a compute unit might limit the number of work-groups that can be
executed simultaneously. An implementation can use group segment memory to implement fbarriers,
which will reduce the amount of group segment memory available to group segment variables. If a kernel
uses more fbarriers than a kernel agent supports, then an error must be reported by the finalizer.

An fbarrier conceptually contains three fields:

l Unsigned integer member_count — the number of wavefronts in the work-group that are
members of the fbarrier.

l Unsigned integer arrive_count — the number of wavefronts in the work-group that are either
currently waiting on the fbarrier or have arrived at the fbarrier.

l SetOfWavefrontId wait_set — the set of wavefronts currently waiting on the fbarrier.

An fbarrier is an opaque object and can only be accessed using fbarrier instructions. An implementation is
free to implement the semantics implied by these conceptual fields in any way it chooses, and is not
restricted to having these exact fields.

The fbarrier instructions are described below. They can refer to the fbarrier they operate on by the identifier
of the fbarrier statement.

230 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 231

The address of an fbarrier can be taken with the ldf instruction. This returns a u32 value in a register that
can also be used by fbarrier instructions to specify which fbarrier to operate on.

9.2.2 Syntax

Table 9–2 Syntax for fbar Instructions

Opcodes Operands
initfbar src

joinfbar_width src

waitfbar_width src

arrivefbar_width src

leavefbar_width src

releasefbar src

ldf_u32 dest, fbarrierName

Explanation of Modifier

width: Optional: width(n), width(WAVESIZE), or width(all). Used to specify the execution uniformity among the
work-items of a work-group. If n is specified, it must be a multiple of WAVESIZE. If the width modifier is omitted, it
defaults to width(WAVESIZE). See 2.12. Divergent Control Flow (page 41).

Explanation of Operands (see 4.16. Operands (page 104))

src: Either the name of an fbarrier, or an s register containing a value produced by an ldf instruction. If a register,
its compound type is u32.

fbarrierName: Name of the fbarrier on which to operate.

dest: An s register.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.5. BRIG Syntax for Parallel Synchronization and Communication Instructions (page
356).

9.2.3 Description

initfbar

Before an fbarrier can be used by any work-item in the work-group, it must be initialized.

The src operand specifies the fbarrier to initialize.

initfbar conceptually sets the member_count and arrive_count to 0, and the wait_set to
empty. On some implementations, this instruction might perform allocation of additional resources
associated with the fbarrier.

An fbarrier must not be initialized if it is already initialized. This implies only one work-item of the work-
group must perform the initfbar instruction at a time.

An fbarrier must be initialized because a finalizer cannot know the full set of fbarriers used by a work-
group in the presence of dynamic group memory allocation.

Chapter 9. Parallel Synchronization andCommunication Instructions 9.2 Fine-Grain Barrier (fbarrier) Instructions

Chapter 9. Parallel Synchronization andCommunication Instructions 9.2 Fine-Grain Barrier (fbarrier) Instructions

There must not be a race condition between the work-item that executes the initfbar and any other
work-items in the work-group that execute fbarrier instructions on the same fbarrier. This requirement
can be satisfied by using the barrier instruction, or the waitfbar instruction (on another fbarrier)
between the initfbar and the fbarrier instructions that use it.

Once an fbarrier has been initialized, its memory cannot be modified by any instruction except fbarrier
instructions until it is released by an releasefbar instruction.

Every fbarrier that has been initialized must be released by an releasefbar instruction. Once
released, the fbarrier is no longer considered initialized.

joinfbar

Causes the work-item to become a member of the fbarrier.

The src operand specifies the fbarrier to join.

This instruction (which includes the value of the src operand) must be wavefront execution uniform
(see 2.12. Divergent Control Flow (page 41)). This implies that all active work-items of a wavefront must
be members of the same fbarriers.

joinfbar conceptually atomically increments the member_count for the wavefront.

A work-item must not join an fbarrier that has not been initialized, nor join an fbarrier of which it is
already a member.

waitfbar

Is an execution barrier, see 9.3. Execution Barrier (page 238).

Indicates that the work-item has arrived at the fbarrier, and causes execution of the work-item to wait
until all other work-items of the same work-group that are members of the same fbarrier have arrived
at the fbarrier.

The src operand specifies the fbarrier on which to wait.

This instruction (which includes the value of the src operand) must be wavefront execution uniform
(see 2.12. Divergent Control Flow (page 41)). This implies that all active work-items of a wavefront
arrive at an waitfbar together.

waitfbar conceptually atomically increments the arrive_count for the wavefront, and adds the
wavefront to the wait_set. It then atomically checks and waits until the arrive_count equals the
member_count, at which point any wavefronts in the wait_set are allowed to proceed, the
arrive_count is reset to 0, and the wait_set reset to empty.

A work-item must not wait on an fbarrier that has not been initialized, nor wait on an fbarrier of which it
is not a member.

arrivefbar

Is an execution barrier, see 9.3. Execution Barrier (page 238).

Indicates that the work-item has arrived at the fbarrier, but does not wait for other work-items that are
members of the fbarrier to arrive at the same fbarrier. If the work-item is the last of the fbarrier
members to arrive, then any work-items waiting on the fbarrier can proceed and the fbarrier is reset.

The src operand specifies the fbarrier on which to arrive.

232 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 233

This instruction (which includes the value of the src operand) must be wavefront execution uniform
(see 2.12. Divergent Control Flow (page 41)). This implies that all active work-items of a wavefront
arrive at an arrivefbar together.

arrivefbar conceptually atomically increments the arrive_count for the wavefront, and checks if
the arrive_count equals the member_count. If it does, then atomically any wavefronts in the
wait_set are allowed to proceed, the arrive_count is reset to 0, and the wait_set is reset to
empty.

A work-item must not arrive at an fbarrier that has not been initialized, nor arrive at an fbarrier of which
it is not a member.

After a work-item has arrived at an fbarrier, it cannot wait, arrive, or leave the same fbarrier unless the
fbarrier has been satisfied and the arrive_count has been reset to 0.

leavefbar

Indicates that the work-item is no longer a member of the fbarrier. It does not wait for other work-items
that are members of the fbarrier to arrive. If the work-item is the last of the fbarrier members to arrive,
then any work-items waiting on the fbarrier can proceed and the fbarrier is reset.

The src operand specifies the fbarrier to leave.

Every work-item that joins an fbarrier must leave the fbarrier before it exits.

A leavefbar instruction does not perform a memory fence before proceeding. An explicit sync
instruction can be used if that is required in order to make any data being communicated visible.

This instruction (which includes the value of the src operand) must be wavefront execution uniform
(see 2.12. Divergent Control Flow (page 41)). This implies that all active work-items of a wavefront must
be members of the same fbarriers.

leavefbar conceptually atomically decrements the member_count for the wavefront, and checks if
the arrive_count equals the member_count. If it does, then atomically any wavefronts in the
wait_set are allowed to proceed, the arrive_count is reset to 0, and the wait_set is reset to
empty.

A work-item must not leave an fbarrier that has not been initialized, nor leave an fbarrier of which it is
not a member.

releasefbar

Before all work-items of a work-group exit, every fbarrier that has been initialized by a work-item of the
work-group using initfbar must be released.

The src operand specifies the fbarrier to release.

Once released, the fbarrier is no longer considered initialized. An fbarrier must not be released if it is
not already initialized. This implies that only one work-item of the work-group must perform the
releasefbar instruction at a time.

An fbarrier must have no members when released. This implies that every work-item that joins an
fbarrier must leave the fbarrier before it exits.

An fbarrier must be released, because some implementations might need to deallocate the additional
resources allocated to an fbarrier when it was initialized.

Chapter 9. Parallel Synchronization andCommunication Instructions 9.2 Fine-Grain Barrier (fbarrier) Instructions

Chapter 9. Parallel Synchronization andCommunication Instructions 9.2 Fine-Grain Barrier (fbarrier) Instructions

There must not be a race condition between the other work-items in the work-group that execute
fbarrier instructions on the same fbarrier and the work-item that executes the releasefbar. This
requirement can be satisfied by using the barrier instruction, or the waitfbar instruction (on
another fbarrier) between the fbarrier instructions that use it and the releasefbar.

ldf

Places the address of an fbarrier into the destination dest. The address has work-group persistence
(see 2.8.4. Memory Segment Access Rules (page 36)) and the value can only be used in work-items that
belong to the same work-group as the work-item that executed the ldf instruction. The compound type
dest is always u32 regardless of the machine model (see 2.9. Small and Large Machine Models (page
39)). The value returned can be used with fbarrier instructions to specify which fbarrier they are to
operate on.

9.2.4 Additional Information About Fbarrier Instructions

Additional information about the use of fbarrier instructions:

l Fbarrier instructions are allowed in divergent code. In fact, this is a primary reason to use fbarriers
rather than the barrier instruction, which can only be used in work-group uniform code. However,
fbarrier usage must be wavefront uniform.

l The fbarrier instruction that arrives at an fbarrier does not need to be the same instruction in each
wavefront. The instruction simply needs to reference the same fbarrier.

l The fbarrier instructions that operate on a particular fbarrier do not need to be in the same code
block. They are allowed to be in both the kernel body and different function bodies.

l Fbarriers can be used in functions. If the function is called in divergent code, then an fbarrier can be
passed by reference as an argument so the function has an fbarrier that has all the work-items that
are calling it as members. The function can use this to synchronize usage of its own fbarriers.

l An fbarrier can be initialized and released multiple times. While not initialized, the group memory
associated with an fbarrier can be used for other purposes. However, on some implementations, the
cost to initialize and release an fbarrier might make it preferable to only perform these instructions
once per work-group fbarrier, and then reuse the same fbarrier by using joinfbar and
leavefbar. A barrier instruction, or waitfbar (to another fbarrier) instruction, can be used
between the leavefbar and joinfbar instructions to avoid race conditions between the fbarrier
instructions that use the fbarrier for different purposes.

l For more information on how waitfbar and arrivefbar interact with the memory operations
performed by the work-items that are members of the associated fbarrier, see 9.3. Execution Barrier
(page 238).

When using fbarrier operations, the following rules must be satisfied or the execution behavior is undefined:

l All work-items that are members of an fbarrier must perform either an waitfbar, arrivefbar,
or leavefbar on the fbarrier; otherwise, deadlock will occur when a work-item performs an
waitfbar on the fbarrier.

l No work-item is allowed to be a member of any fbarrier when it exits. It must perform an
leavefbar on every fbarrier on which it performs an joinfbar.

234 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 235

l While a work-item is waiting on an fbarrier, it is allowed for other work-items in the same work-group
to perform joinfbar, waitfbar, arrivefbar, and leavefbar instructions. All but
joinfbar can cause the waiting work-items to be allowed to proceed, either because the
arrive_count is incremented to match the member_count, or the member_count is
decremented to match the arrive_count.

However, there must not be a race condition between joinfbar instructions and waitfbar,
arrivefbar, and leavefbar, instructions such that the order in which they are performed might
affect the number of members the fbarrier has when a wait is satisfied.

One way to satisfy this requirement is by using the barrier instruction, or the waitfbar
instruction (on another fbarrier), between the joinfbar and waitfbar, arrivefbar, and
leavefbar instructions. This ensures that all work-items have become members before any start
arriving at the fbarrier. However, other uses of barrier and waitfbar (on another fbarrier)
instructions can also ensure the race condition free requirement.

l Similarly, there cannot be a race condition between an arrivefbar instruction and other fbarrier
instructions that could result in the same work-item performing more than one fbarrier instruction
on the same fbarrier without the fbarrier having been satisfied and the arrive_count being reset
to 0.

This requirement can also be satisfied by using a barrier or waitfbar (on another fbarrier)
instruction after the arrivefbar instruction.

9.2.5 Pseudocode Examples

To use fbarriers in divergent code, it is necessary to create an fbarrier with only the work-items that are
executing the divergent code. This can be done by creating an fbarrier with all the work-items and then
using leavefbar on the non-interesting divergent paths as shown in Example 1.

Example 1: Using leavefbar to create an fbarrier that only contains
divergent work-items.

01: fbarrier %fb1;
02: if (workitemflatid_u32 == 0) {
03: initfbar %fb1;
04: }
05: barrier;
06: joinfbar %fb1; // start with all work-items
07: barrier;
08: if (cond1) { // cond1 must be WAVESIZE uniform
09: ...
10: if (cond2) { // cond2 must be WAVESIZE uniform
11: ...
12: memfence_screl_system;
13: waitfbar %fb1; // fb1 only has work-items for which

// cond1 && cond2 is true as other
// work-items have left on
// lines 18 and 21.

14: memfence_scacq_system;
15: ...
16: leavefbar %fb1;
17: } else {
18: leavefbar %fb1;
19: }
20: } else {
21: leavefbar %fb1;
22: }
23: barrier;

Chapter 9. Parallel Synchronization andCommunication Instructions 9.2 Fine-Grain Barrier (fbarrier) Instructions

Chapter 9. Parallel Synchronization andCommunication Instructions 9.2 Fine-Grain Barrier (fbarrier) Instructions

24: if (workitemflatid_u32 == 0) {
25: releasefbar %fb1;
26: }

Or an fbarrier can be created that has all the work-items on all divergent paths, and then using this to
synchronize creating another fbarrier that only the work-items executing the desired divergent path join as
shown in Example 2.

Example 2: Using joinfbar to create an fbarrier that only contains
divergent work-items.

01: fbarrier %fb0;
02: fbarrier %fb1;
03: if (workitemflatid_u32 == 0) {
05: initfbar %fb0;
06: initfbar %fb1;
07: }
08: barrier;
09: joinfbar %fb0; // fb0 has all work-items of work-group
10: barrier;
11: if (cond1) { // cond1 must be WAVESIZE uniform
12: ...
13: if (cond2) { // cond2 must be WAVESIZE uniform
14: joinfbar %fb1;
15: waitfbar %fb0; // wait for all work-items to either

// join fb1 on line 14 or arrive at
// line 23 or 26

16: ...
17: memfence_screl_system;
18: waitfbar %fb1; // fb1 only has work-items for which

// cond1 && cond2 is true
19: memfence_scacq_system;
20: ...
21: leavefbar %fb1;
22: } else {
23: waitfbar %fb0;
24: }
25: } else {
26: waitfbar %fb0;
27: }
28: leavefbar %fb0;
29: barrier;
30: if (workitemflatid_u32 == 0) {
31: releasefbar %fb0;
30: releasefbar %fb1;
31: }

The following example uses two fbarriers to allow producer and consumer wavefronts to overlap execution.

Example 3: Producer/consumer using two fbarriers that allow
producer and consumer wavefront executions to overlap.

kernel producerConsumer(data_item_count)
{
// Declare the fbarriers.
fbarrier %produced_fb;
fbarrier %consumed_fb;

// Use a single work-item to initialize the fbarriers.
if (workitemflatid_u32 == 0) {
initfbar [%produced_fb];
initfbar [%consumed_fb];

}
// Wait for fbarriers to be initialized before using them.

236 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 237

// No memory fence required as no data has been produced yet.
barrier;

// All work-items join both fbarriers.
joinfbar [%fb_produced];
joinfbar [%fb_consumed];
// Wait for all fbarriers to join to prevent a race condition
// between join and subsequent wait.
// No memory fence required as no data has been produced yet.
barrier;

// Ensure all produces and consumers are in the same wavefront
// so that the fbarrier instructions are wavefront uniform.
producer = ((workitemflatid_u32 / WAVESIZE) & 1) == 1;

if (producer) {
for (i = 1 to data_item_count) {
// Producer compute new data.

// Wait until all consumers have processed the previous
// data before storing the new data.
// No need for a memory fence as consumer is producing no data
// used by the consumer.
waitfbar [%consumed_fb];
// fill in new data in some group segment buffer data.
// Tell the consumers the data is ready.
// Using arrive allows the producer to continue computing new data
// before all consumers have read this data.
// Memory fence should correspond to segment holding data to
// make sure it is visible to consumer.
memfence_screl_wg;
arrivefbar [%produced_fb];

}
} else {
// Tell producer ready to receive new data. This is the
// initial state of a consumer.
// No memory barrier required as consumer is not producing any data.
arrivefbar [%consumed_fb];

for (j = 1 to data_item_count) {
// Wait for all producers to store new data.
// Memory fence should correspond to segment holding data to make
// sure it is visible to consumer.
waitfbar [%produced_fb];
memfence_scacq_wg;

// Consumer reads the new data

// Only need to tell producer have read data if there is
// another value to be produced.
if (j != data_item_count) {
// Tell producer have read new data.
// Using arrive allows the consumer to start processing the data
// before all consumers have read the data.
// No memory barrier required as consumer is not producing any data.
arrivefbar [%consumed_fb];

}

// Consumer processes new data.
}

}
// Ensure each work-item leaves the fbarriers it has
// joined before it terminates.
leavefbar %producer_fb;

Chapter 9. Parallel Synchronization andCommunication Instructions 9.2 Fine-Grain Barrier (fbarrier) Instructions

Chapter 9. Parallel Synchronization andCommunication Instructions 9.3 Execution Barrier

leavefbar %consumer_fb;

// Wait for fbarriers to be finished with before releasing them.
// No memory fence required as no data has been produced.
barrier;

// Use a single work-item to release the fbarriers.
if (workitemflatid_u32 == 0) {
releasefbar %produced_fb;
releasefbar %consumed_fb;

}
}

Examples
fbarrier %fb;
initfbar %fb;
joinfbar %fb;
waitfbar %fb;
arrivefbar %fb;
leavefbar %fb;
releasefbar %fb;
ldf_u32 $s0, %fb;
joinfbar $s0;

9.3 Execution Barrier
A barrier instruction is used to synchronize the execution of the work-items that participate in an associated
execution barrier instance:

l For the barrier instruction the participating work-items are those that are members of the same
work-group and each work-group has a distinct execution barrier instance per barrier instruction.

l For the wavebarrier instruction the participating work-items are those that are members of the
same wavefront and each wavefront has a distinct execution barrier instance per wavebarrier
instruction.

l For the waitfbar and arrivefbar instructions the participating work-items are those that are
members of the specified fbarrier and each work-group has a distinct execution barrier instance
per fbarrier definition.

An execution barrier instance is satisfied when all participating work-items have executed a barrier
instruction that specifies the execution barrier instance.

The barrier instructions interact with the memory model (see 6.2. Memory Model (page 169)) as if they use
read-modify-write relaxed atomic memory instructions on a location associated with their barrier instance
as described by the following pseudo code:

atomic_add_group_rlx_wg(barrier_instance.arrived_count, 1);
while (atomic_ld_group_rlx_wg(barrier_instance.arrived_count) !=

barrier_instance.participant_count) sleep;
atomic_sub_group_rlx_wg(barrier_instance.arrived_count, 1);
if (operation != arrivefbar)
while (atomic_ld_group_rlx_wg(barrier_instance.arrived_count) != 0) sleep;

However, it is permitted to implement barrier instructions in any manner, provided they interact with the
memory model in the same way.

238 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 239

A consequence is that:

l A barrier instruction does not prevent memory instructions performed by the same thread being
reordered with the barrier instruction.

l A barrier instruction does not ensure that the memory instructions that precede it become visible to
the memory instructions that succeed it for the participating work-items after the barrier instance
has been satisfied.

However, by using a release memory fence before a barrier instruction, and an acquire memory fence after
a barrier instruction, for the desired memory scope, the following can be achieved:

l Prevent reordering of memory instructions across a barrier instruction.

l Ensure visibility of the memory instructions performed by participating work-items before the barrier
instruction, to the memory instructions performed by participating work-items after the barrier
instruction.

This is achieved as a consequence of the memory model rules that define how memory fences interact with
the conceptual relaxed atomic instructions of the barrier to establish happens-before relations. Note that
the read-modify-write loops ensure all participating work-items have accessed the same location on entry to
the barrier, and also accessed the same location again on exit (except for arrivefbar) after the barrier
instance has been satisfied. Therefore, an acquire memory fence executed by a work-item after the barrier
instance has been satisfied, will synchronize-with each release memory fence executed by the participating
work-items before the barrier instruction, and so make the memory instructions performed by those work-
items visible.

See 7.1.10. Image Memory Model (page 218) for additional rules related to imagefence.

The clock (see 11.4. Miscellaneous Instructions (page 264)) and signal (see 6.8. Notification (signal)
Instructions (page 187)) instructions are defined to behave as if an atomic memory instruction, and so a
memory fence will also control their reordering across a barrier instruction.

The cross-lane (see 9.4. Cross-Lane Instructions (next page)), cleardetectexcept,
getdetectexcept, and setdetectexcept (see 11.2. Exception Instructions (page 260)) instructions
are required to be execution uniform (see 2.12. Divergent Control Flow (page 41)). Therefore, the
communicating work-items will always execute together and so it is not observable if an implementation
reorders them in either direction across a barrier instruction.

Instructions not otherwise specified above do not involve communication between work-items or other
agents. Therefore, they can be moved (by the implementation) across a barrier instruction in either
direction, since their execution order is not detectable from other work-items or other agents.

A barrier instruction is always required to be execution uniform for the participating work-items: all
participating work-items must either execute it, or not execute it. The result is undefined if a barrier
instruction is used in divergent code with respect to the participating work-items. The underlying threading
model is undefined by the specification, so some architectures might reach deadlock in the presence of
divergent barriers while others might not correctly synchronize. See 2.12. Divergent Control Flow (page 41).

A barrier instruction can be used in a loop provided the loop introduces no divergent control flow with
respect to the participating work-items. This requires that all participating work-items execute the loop the
same number of iterations.

Chapter 9. Parallel Synchronization andCommunication Instructions 9.3 Execution Barrier

Chapter 9. Parallel Synchronization andCommunication Instructions 9.4 Cross-Lane Instructions

The number of work-items participating in a barrier instruction may be less than or equal to the wavefront
size either because the instruction is wavebarrier or is barrier when the work-group size is less than
or equal to the wavefront size. In such cases all participating work-items will be members of the same
wavefront, and an implementation is free to optimize the code generated for the barrier when the gang-
scheduled execution of work-items in wavefronts will ensure execution synchronization. However, even if
such an optimization is performed, any memory fences that come before or after the original position of the
barrier instruction must continue to behave in the same way.

Note it is undefined to omit a barrier instruction and simply rely on gang scheduling to ensure execution
synchronization. If execution synchronization is required, even if the number of participating work-item is
less than or equal to the wavefront size, a barrier instruction must be used. The implementation should
automatically produce optimized code for such barriers. The requiredworkgroupsize and
maxflatworkgroupsize control directives (see 13.4. Control Directives for Low-Level Performance
Tuning (page 278)) can be used to specify the work-group size. This can allow the implementation to
optimize the barrier instruction when the size is less than or equal to the implementation's wavefront size.

9.4 Cross-Lane Instructions
These instructions perform work across lanes in a wavefront. These instructions apply only to active work-
items within a wavefront (see 2.5. Active Work-Groups and Active Work-Items (page 28)).

9.4.1 Syntax

Table 9–3 Syntax for Cross-Lane Instructions

Opcodes Operands
activelanecount_width_u32_b1 dest, src

activelaneid_width_u32 dest

activelanemask_v4_width_b64_b1 (dest0, dest1, dest2, dest3), src

activelanepermute_width_bLength dest, src, laneId, identity, useIdentity

Explanation of Modifier

width: Optional: width(n), width(WAVESIZE), or width(all). Used to specify the execution uniformity among the
work-items of a work-group. Each active lane in a wavefront can have different values for the source operands, and
produce a different value, regardless of the width modifier. If the width modifier is omitted, it defaults to width(1),
indicating each lane of the wavefront can be independently active or inactive. See 2.12. Divergent Control Flow
(page 41).

Length: 1, 32, 64, 128.

Explanation of Operands (see 4.16. Operands (page 104))

dest, dest0, dest1, dest2, dest3 : Destination register.

src, laneId, identity, useIdentity: Sources. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.5. BRIG Syntax for Parallel Synchronization and Communication Instructions (page
356).

240 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 241

9.4.2 Description

activelanecount

Counts the number of active work-items in the current wavefront that have a non-zero source src and
puts the result in dest. The instruction returns a value in the range 0 to WAVESIZE.

src is treated as a b1 and dest is treated as a u32.

activelaneid

Sets the destination dest in each active work-item to the count of the number of earlier (in flattened
work-item order) active work-items within the same wavefront. The result will be in the range 0 to
WAVESIZE - 1.

dest is treated as a u32.

Because activelaneid gives each active work-item in the wavefront a unique value, it is often used
in compaction. It can be thought of as a prefix sum of the number of active work-items in the current
wavefront.

activelanemask

Returns a bit mask in a vector of four d registers that shows which active work-items in the wavefront
have a non-zero source src. The affected bit position within the registers of dest corresponds to each
work-item’s lane ID. The first register covers lane IDs 0 to 63, the second register 64 to 127, and so on.
Any bits corresponding to lane IDs that are greater than or equal to the actual implementations
wavefront size must be set to 0.

src is treated as a b1. dest0, dest1, dest2 and dest3 are a vector of four registers each treated
as a b64.

activelanepermute

If the lane laneId modulo WAVESIZE (in the same wavefront) is inactive or useIdentity is 1, the
value in identity is transfered to dest. Otherwise, the value in src of the lane (in the same
wavefront) specified by laneId modulo WAVESIZE is transfered to dest. Note that lanes not part of
a work-group (due to partial wavefronts) are treated as inactive.

src, identity and dest are treated as a b type of size Length; laneId is treated as a u32; and
useIdentity is treated as a b1.

If a lane is not active, it does not receive a value.

It is valid for an active lane to specify itself as the sending lane.

It is valid for multiple active lanes to specify the same active lane as the sending lane.

Conceptually the dest operands are updated in parallel, using values for the src, laneId,
identity and useIdentity operands prior to executing the activelanepermute instruction.
This allows any of the source operands and destination operands to be the same register.

See this pseudocode:

type result[WAVESIZE];
for(l = 0; l < WAVESIZE; ++l) {
result[l] = identity;
if (lane[l].active &&

!lane[l].useIdentity &&

Chapter 9. Parallel Synchronization andCommunication Instructions 9.4 Cross-Lane Instructions

Chapter 9. Parallel Synchronization andCommunication Instructions 9.4 Cross-Lane Instructions

lane[lane[l].laneId % WAVESIZE].active) {
result[l] = lane[lane[l].laneId % WAVESIZE].src;

}
}
for(l = 0; l < WAVESIZE; ++l) {
if (lane[l].active) lane[l].dest = result[l];

}

Examples
activelanecount_u32_b1 $s1, $c0;
activelaneid_u32 $s1;
activelaneid_width(WAVESIZE)_u32 $s1;
activelanemask_v4_b64_b1 ($d0, $d1, $d2, $d3), $c0;
activelanepermute_b32 $s1, $s2, $s2, $s3, $c1;
activelanepermute_b64 $d1, $d2, 0, 0, 0;
activelanepermute_width(all)_b128 $q1, $q2, $s2, $q3, $c1;

242 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 243

CHAPTER 10.
Function Instructions

This chapter describes how to use functions in HSAIL and the related instructions.

10.1 Functions in HSAIL
Like other programming languages, HSAIL provides support for user functions. A call instruction transfers
control to the start of the code block of the user function. Once the function's code block has completed
execution, either by reaching the end or by executing a ret instruction, control is transferred back to the
instruction immediately after the call instruction.

In order that HSAIL can execute efficiently on a wide range of compute units, an abstract method is used for
passing arguments, with the finalizer determining what to do. This is necessary because, on a GPU, stacks
are not a good use of resources, especially if each work-item has its own stack. If an application is
simultaneously running, for example, 30,000 work-items, then the stack-per-work-item is very limited.
Having one return address per wavefront (not one address per work-item) is desirable.

Implementations should map the abstractions into appropriate hardware.

Function definitions cannot be nested, but functions can be called recursively.

10.1.1 Example of a Simple Function

The simplest function has no arguments and does not return a value. It is written in HSAIL as follows:

function &foo()()
{
ret;

};

function &bar()()
{
{ //start argument scope
call &foo()();

} //end argument scope
};

Execution of the call instruction transfers control to foo, implicitly saving the return address. Execution of
the ret instruction within foo transfers control to the instruction following the call.

10.1.2 Example of a More Complex Function

Here is a more complex example of a function:

// Call a compare function with two floating-point arguments
// Allocate multiple arg variables to hold arguments

function &compare(arg_f32 %res)(arg_f32 %left, arg_f32 %right)
{
ld_arg_f32 $s0, [%left];
ld_arg_f32 $s1, [%right];
cmp_eq_f32_f32 $s0, $s1, $s0;
st_arg_f32 $s0, [%res];
ret;

Chapter 10. Function Instructions 10.1 Functions in HSAIL

Chapter 10. Function Instructions 10.2 Function Call Argument Passing

};

kernel &main()
{
// ...
{ //start argument scope
arg_f32 %a;
arg_f32 %b;
arg_f32 %res;

// Fill in the arguments
st_arg_f32 4.0f, [%a];
st_arg_f32 $s0, [%b];
call &compare(%res)(%a, %b);
ld_arg_f32 $s0, [%res];

} // End argument scope
// ...

};

The function header specifies the output formal argument, followed by the list of input formal arguments.
The call instruction specifies a corresponding output actual argument, followed by a list of input actual
arguments.

10.1.3 Functions That Do Not Return a Result

Functions that do not return a result are declared with an empty output arguments list:

function &foo()(arg_u32 %in)
{ // does not return a value
ret;

};

10.2 Function Call Argument Passing
The argument values passed in and out of a call to a function are termed the actual arguments. Instructions
in the function code block access the actual argument values using the formal arguments of the function
definition.

Actual argument definitions are variable definitions in an arg block that specify the arg segment. Formal
argument definitions are variable definitions in the function header that specify the arg segment. Variable
declaration and definitions that specify the arg segment cannot appear in any other place. See 4.3.6. Arg
Block (page 62) and 4.3.3. Function (page 58).

A function specifies a list of zero or more output formal arguments and a list of zero or more input formal
arguments. A call instruction provides a corresponding list of zero or more output actual arguments and
zero or more input actual arguments.

Currently, HSAIL supports only a single output argument from a function. Additional results can always be
passed by allocating space in the caller and passing an address. For example, by defining a function scope
private segment variable. Later versions might allow additional output parameters.

A function can declare an arbitrary number of formal arguments. Each implementation is allowed to limit
the number of bytes used for the allocation of arg variables, but must support a minimum of 64 bytes.

Actual arguments are passed into and out of a call to a function using an arg block together with a call
instruction.

Arguments are pass-by-value. This includes arguments that are defined as arrays.

244 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 245

Within an arg block:

l There are zero or more actual argument definitions.

l Instructions to assign values to actual arguments used as input formal arguments of the function
being called.

l Exactly one call instruction that uses those actual arguments.

l Instructions to retrieve a value from the actual argument used as the output formal argument of the
function being called.

l In addition, an arg block can have other instructions including control flow and label definitions.

Actual argument, and formal argument identifiers must start with a percent (%) sign.

Actual arguments have argument scope which starts from the point of definition to the end of the enclosing
arg block, and their lifetime extends to the end of the enclosing arg block. An argument scope name hides a
definition with the same name outside the arg block in the enclosing function scope. Each arg block defines
a distinct argument scope: the same name can be used for actual arguments in different arg blocks.
Function definition formal arguments have function scope which starts from the point of definition in the
function header to the end of the function's code block. See 4.6.2. Scope (page 78).

Each work-item can set a different value into its own arg segment variables. Arg segment variables cannot
be read or written by other work-items.

Arg blocks cannot be nested.

Arg blocks can include multiple basic blocks.

It is an error to branch into or out of an arg block.

It is an error to use a ret instruction in an arg block.

It is not valid to use an alloca instruction in an arg block.

There must be a one to one correspondence between the actual arguments of an arg block, and the formal
arguments of the function called by the single call instruction in the arg block. Each actual argument must
appear exactly once as either an input actual argument or output actual argument of the call instruction. It is
an error if an actual argument does not appear as one of the call instructions input or output arguments,
appears more than once as an input or output argument, or appears as both an input and output argument.
This requirement applies even if the called function does not use an input formal argument, or the arg block
does not use the output actual argument.

The actual arguments of a call instruction must be compatible with the corresponding formal parameters of
the function being called. The arguments are compatible if there are the same number of actual and formal
input arguments, the same number of actual and formal output arguments, and for each argument one of
these properties holds:

l The two have identical type, array dimension declarations, and alignment. The array dimension
declaration matches if both are not arrays (have no array dimension) or both are arrays and specify
the same array dimension size.

l The argument is the last input argument and both are arrays with elements that have identical type
and alignment, and the formal is an array with unspecified size. See 10.4. Variadic Functions (page
248).

Chapter 10. Function Instructions 10.2 Function Call Argument Passing

Chapter 10. Function Instructions 10.2 Function Call Argument Passing

The alignment matches if it has the same value regardless of whether it is explicitly specified by an align
type qualifier, or has implicit default natural alignment.

For indirect function calls, the formal arguments are specified by a function signature and must match the
formal arguments of the function that is actually called at runtime (see 10.3.3. Function Signature (page
248)).

An arg segment variable declared as an array is useful in the following cases:

l To pass a structure to a function.

l To pass a large number of arguments to a function.

l To pass a variable number of arguments to a function.

l To pass argument values of different types to a function.

For actual arguments that correspond to the input formal arguments, the results are undefined if they are
accessed by any instruction other than a st instruction that is post-dominated (see 2.12.3. (Post-)Dominator
and Immediate (Post-)Dominator (page 45)) by the call instruction.

For the actual argument that corresponds to the output formal argument, the results are undefined if it is
accessed by any instruction other than a ld instruction that is dominated by the call instruction.

It is undefined if the single call instruction contained in the arg block is not executed exactly once while
executing the arg block. Therefore, it is not allowed to conditionally execute the call instruction within the
arg block, or loop within the arg block to execute the call instruction multiple times. If that is required then
the control flow should be placed outside the arg block.

In the code block of the called function definition:

l For input formal arguments, it is an error if they are accessed by any instruction other than an ld
instruction.

l For the output formal argument, it is an error if it is accessed by any instruction other than an st
instruction.

At the start of execution of the function code block, the input formal arguments have the final value stored
to the corresponding actual argument of the call instruction in the arg block. The input formal argument
value for any bytes not stored in the corresponding input actual argument in the calling arg block are
undefined.

At the start of execution of the function code block, the output formal argument value is undefined. When
execution of the function code block returns to the calling arg block, the output actual argument has the final
value stored in the output formal argument. The output actual argument value for any bytes not stored in
the called function code block are undefined.

An arg segment variable can be used to hold the address of an array that is allocated to private segment
memory. The private segment variable can be used to bundle up a sequence of actual arguments and then
pass the variable to the function by reference.

A typical call to a function operates as described below:

l In the caller arg block:

a. Define actual arguments to hold input and output function arguments.

246 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 247

b. Store the values into the input actual arguments.

c. Make the call specifying the actual arguments as the input and output function arguments.

d. Optionally load the result from the output actual argument after the call.

l In the callee function definition:

a. The input arguments come into the function as input formal arguments.

b. Code can use loads to access the input formal arguments.

c. The callee can copy the formal arguments into private segment variables in order to use lda
to obtain a private segment address that can be passed to additional functions.

d. Store the result into the output formal argument.

The finalizer can implement arg segment variables as physical registers or can map them into memory.

10.3 Function Declarations, Function Definitions, and Function Signatures
Functions definitions cannot be nested, but functions can be called recursively.

Every function must be declared or defined prior to being called.

After a function has been declared, a call instruction can use the function as a target. See 10.6. Direct Call
(call) Instruction (page 250), 10.7. Switch Call (scall) Instruction (page 251) and 10.8. Indirect Call (icall)
Instruction (page 252).

10.3.1 Function Declaration

A function declaration is a function header, prefixed by decl, without a code block. A function declaration
declares a function, providing attributes, the function name, and names and types of the output and input
arguments. See 4.3.3. Function (page 58).

For example:

decl function &fun(arg_u32 %out)(arg_u32 %in0, arg_u32 %in1);

10.3.2 Function Definition

A function definition defines a function. It is a function header, followed by a code block. See 4.3.3. Function
(page 58).

For example:

function &fnWithTwoArgs(arg_u32 %out)(arg_u32 %in0, arg_u32 %in1)
{
ld_arg_u32 $s0, [%in0];
ld_arg_u32 $s1, [%in1];
add_u32 $s2, $s0, $s1;
st_arg_u32 $s2, [%out];
ret;

};

function &caller()()
{
// ...
{

arg_u32 %input1;
arg_u32 %input2;
arg_u32 %res;

Chapter 10. Function Instructions 10.3 Function Declarations, Function Definitions, and Function Signatures

Chapter 10. Function Instructions 10.4 Variadic Functions

st_arg_u32 $s1, [%input1];
st_arg_u32 42, [%input2];
call &fnWithTwoArgs(%res)(%input1, %input2); // call of a function

// all work-items called
ld_arg_u32 $s2, [%res];

}
// ...

};

10.3.3 Function Signature

A signature is used to describe the type of a function. It cannot be called directly, but instead is used to
specify the target of an indirect function call icall instruction. Syntactically, a signature is much like a
function. See 4.3.4. Signature (page 60).

In the following example, assume that $d2 in each work-item contains an indirect function code handle:

signature &fun_t(arg_u32)(arg_u32, arg_u32);
function &caller1()()
{
// ...
{
arg_u32 %in1;
arg_u32 %in2;
arg_u32 %out;
// ...
icall_u64 $d2(%out)(%in1, %in2) &fun_t;

}
};

This is a call of some indirect function that takes two u32 arguments and returns a u32 result. The
particular target function is selected by the contents of register $d2. Each work-item has its own $d2, so
this might call many different indirect functions.

For more information, see 10.8. Indirect Call (icall) Instruction (page 252).

10.4 Variadic Functions
A variadic function is a function that accepts a variable number of arguments.

In HSAIL, variadic functions are declared by specifying the last formal argument as an array with no
specified size (for example, uint32 extra_args[]). The matching actual argument passed by a call
instruction must be an arg segment variable defined as a fixed-size array.

The example function below computes the sum of a list of floating-point values. The first argument to the
function is the size of the list and the second argument is an array of floating-point values.

function &sumofN(arg_f32 %r)(arg_u32 %n, align(8) arg_u8 %last[])
{
ld_arg_u32 $s0, [%n]; // s0 holds the number to add
mov_b32 $s1, 0; // s1 holds the sum
mov_b32 $s3, 0; // s3 is the offset into last

@loop:
cmp_eq_b1_u32 $c1, $s0, 0; // see if the count is zero
cbr_b1 $c1, @done; // if it is, jump to done
ld_arg_f32 $s4, [%last][$s3]; // load a value
add_f32 $s1, $s1, $s4; // add the value
add_u32 $s3, $s3, 4; // advance the offset to the next element
sub_u32 $s0, $s0, 1; // decrement the count
br @loop;

@done:
st_arg_f32 $s1, [%r];
ret;

248 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 249

};

kernel &adder()
{ // here is an example caller passing in 4 32-bit floats
{
align(8) arg_u8 %n[16];
arg_u32 %count;
arg_f32 %sum;
st_arg_f32 1.2f, [%n][0];
st_arg_f32 2.4f, [%n][4];
st_arg_f32 3.6f, [%n][8];
st_arg_f32 6.1f, [%n][12];
st_arg_u32 4, [%count];
call &sumofN(%sum)(%count, %n);
ld_arg_f32 $s0, [%sum];

}
// ... %s0 holds the sum

};

10.5 align Qualifier
align is an optional qualifier indicating the alignment of the arg variable in bytes. For information about
the align qualifier, see 4.3.10. Declaration and Definition Qualifiers (page 69).

Without align, the variable is naturally aligned. That is, it is allocated at an address that is a multiple of the
variable's type.

For example:

{
arg_u32 %x; // holds one 32-bit integer value
arg_f64 %y[3]; // holds three 64-bit float doubles
align(8) arg_b8 %a[16]; // holds 16 bytes on an 8-byte boundary
// ...

}

align is useful when you want to pass values of different types to the same function.

Consider a function &foo that is a simplified version of printf. &foo takes in two formal arguments. The
first argument is an integer 0 or 1. That argument determines the type of the second argument, which is
either a double or a character:

function &foo()(align(8) arg_b8 %z[])
{
// ...
ret;

};
function &top()()
{
// ...
global_f64 %d;
global_u8 %c[4];
ld_global_f64 $d0, [%d];
ld_global_u8 $s0, [%c];
{
align(8) arg_b8 %sk[12]; // ensures that sk starts on an 8-byte

// boundary so that both 32-bit and
// 64-bit stores are naturally aligned

st_arg_u32 $s0, [%sk][8]; // stores 32 bits into the back of sk
st_arg_u64 $d0, [%sk][0]; // stores 64 bits into the front of sk
call &foo()(%sk);

}
// ...

};

Chapter 10. Function Instructions 10.5 align Qualifier

Chapter 10. Function Instructions 10.6 Direct Call (call) Instruction

10.6 Direct Call (call) Instruction
The call instruction transfers control to a specific function.

10.6.1 Syntax

Table 10–1 Syntax for direct call Instruction

Opcode and Modifiers Operands
call function (outputArgs) (inputArgs)

Explanation of Operands (see 4.16. Operands (page 104))

function: Must be the identifier of a function (either non-indirect or indirect). The function output and input
formal arguments must match the outputArgs and inputArgs specified.

outputArgs: List of zero or one call argument.

inputArgs: List of zero or more comma-separated call arguments.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.6. BRIG Syntax for Function Instructions (page 357).

Description

A direct call instruction transfers control to a specific function specified by the function operand.
function can be the identifier of a function declaration or definition. The function can be either a non-
indirect function or an indirect function. At the time of finalizing, the transitive closure of all functions
specified by a call or scall instruction starting at the kernel or indirect function being finalized, must
have a definition in some module in the HSAIL program. In addition, all variables and fbarriers they
reference must have a definition in some module in the HSAIL program. The exception is that global and
readonly segment variables may be declared only, in which case the HSA executable must be used to
provide the definition, such as to a host application variable. See 4.2. Program, Code Object, and Executable
(page 48).

Calls must appear inside of an arg block which is used to pass arguments in and out of the function being
called. This is required even if the function has no arguments. See 10.2. Function Call Argument Passing
(page 244).

Direct calls are the most efficient form of function calls. An implementation may implement them using a
function call stack which can store the arguments, function scope private segment variables, and return
instruction address so execution can resume after the call instruction. The calling convention used could be
specialized to a specific call site. It is also allowed to inline the function code block.

Example
decl function &foo(arg_u32 %r)(arg_f32 %a);

function &example_call(arg_u32 %res)(arg_u32 %arg1)
{
{
arg_f32 %a;
arg_u32 %r;
st_arg_f32 2.0f, [%a];
// call &foo
call &foo(%r)(%a);

250 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 251

ld_arg_u32 $s1, [%r];
}
st_arg_u32 $s1, [%res];

};

10.7 Switch Call (scall) Instruction
The scall instruction uses an integer index to select the specific function to which control is transferred.

10.7.1 Syntax

Table 10–2 Syntax for switch call Instruction

Opcode and Modifiers Operands
scall_width_uLength src (outputArgs) (inputArgs) [functionList]

Explanation of Modifier

width: Optional: width(n), width(WAVESIZE), or width(all). Used to specify the result uniformity of the target for
switch calls. All active work-items in the same slice are guaranteed to call the same target. If the width modifier is
omitted, it defaults to width(1), indicating each active work-item can call a different target. See 2.12.2. Using the
Width Modifier with Control Transfer Instructions (page 44).

Length: 32, 64.

Explanation of Operands (see 4.16. Operands (page 104))

src: Source. Can be a register or immediate value.

outputArgs: List of zero or one call argument.

inputArgs: List of zero or more comma-separated call arguments.

functionList: Comma-separated list of global identifiers of both non-indirect and indirect functions. All functions
must have the same input and output formal arguments, but do not have to match whether they are indirect
functions or not. The functions’ output and input formal arguments must match the outputArgs and inputArgs

specified.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.6. BRIG Syntax for Function Instructions (page 357).

10.7.2 Description

A switch call transfers control to the function in the functionList that corresponds to the index value in
src. If the index value is 0 then the first function is selected, if 1 then the second function, and so forth. The
results are undefined if the number of functions in functionList is less than or equal to the index value.
src can either be of type u32 or u64.

Chapter 10. Function Instructions 10.7 Switch Call (scall) Instruction

Chapter 10. Function Instructions 10.8 Indirect Call (icall) Instruction

The functions in functionList can be either a non-indirect or an indirect functions. They must all have
the same input and output arguments. At the time of finalizing, the transitive closure of all functions
specified by a call or scall instruction starting at the kernel or indirect function being finalized, must
have a definition in some module in the HSAIL program. In addition, all variables and fbarriers they
reference must have a definition in some module in the HSAIL program. The exception is that global and
readonly segment variables may be declared only, in which case the HSA executable must be used to
provide the definition, such as to a host application variable. See 4.2. Program, Code Object, and Executable
(page 48).

Since a switch call can potentially transfer to more than one target, it can result in control flow divergence
which can introduce a performance issue. The width modifier can be used to specify properties about the
control flow divergence that may result in the finalizer producing more efficient code. See 2.12. Divergent
Control Flow (page 41).

Calls must appear inside of an arg block which is used to pass arguments in and out of the function being
called. This is required even if the functions have no arguments. See 10.2. Function Call Argument Passing
(page 244).

It is implementation defined how a switch call is finalized to machine instructions. For example: by a cascade
of compare and conditional branches to direct calls; by an indirect call through a jump table, or a
combination of these approaches. The performance of switch calls can therefore potentially be slow for long
function lists. An implementation may implement the selected call using a function call stack which can store
the arguments, function scope private segment variables and return instruction address so execution can
resume after the switch call instruction. The calling convention used could be specialized to a specific call
site. If cascaded control flow with direct calls is used, it is also allowed to inline any or all of the function code
blocks.

Example
decl function &foo(arg_u32 %r)(arg_f32 %a);
decl function &bar(arg_u32 %r)(arg_f32 %a);

function &example_scall(arg_u32 %res)(arg_u32 %arg1)
{
ld_arg_u32 $s1, [%arg1];
{
arg_f32 %a;
arg_u32 %r;
st_arg_f32 2.0f, [%a];
// call &foo or &bar.
scall_width(all)_u32 $s1(%r)(%a) [&foo, &bar];
ld_arg_u32 $s1, [%r];

}
st_arg_u32 $s1, [%res];

};

10.8 Indirect Call (icall) Instruction
Indirect functions allow an application to incrementally finalize the code for functions that can be called by
kernels that have already been finalized. For example, this may be useful for languages that can
incrementally load and finalize derived classes. The virtual function table for the derived class will then have
indirect function code handles for the derived class virtual functions that override those of the base class.
That may result in a previously finalized kernel calling the derived class functions if passed an object of the
derived class.

252 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 253

An indirect function is declared and defined in the same way as a non-indirect function except:

l The function header must use the indirect qualifier.

l Indirect functions have limitations to allow them to be called by kernels that have already been
finalized. They therefore cannot result in the kernel requiring additional group segment or private
segment memory for variables, or additional fbarriers. Therefore the transitive closure of all
functions specified by a call or scall instruction starting at the indirect function code block, must
not:

o Reference any module scope group or private segment variables.

o Define any function scope group segment variables.

o Reference any module scope fbarriers.

o Define any function scope fbarriers.

10.8.1 Syntax

Table 10–3 Syntax for indirect call Instruction

Opcode and Modifiers Operands
icall_width_uLength src (outputArgs) (inputArgs) signature

Explanation of Modifier

width: Optional: width(n), width(WAVESIZE), or width(all). Used to specify the result uniformity of the target for
indirect calls. All active work-items in the same slice are guaranteed to call the same target. If the width modifier is
omitted, it defaults to width(1), indicating each active work-item can call a different target. See 2.12.2. Using the
Width Modifier with Control Transfer Instructions (page 44).

Length: 32, 64. Must match the size of an indirect function code handle (see Table 2–3 (page 40)).

Explanation of Operands (see 4.16. Operands (page 104))

outputArgs: List of zero or one call argument.

inputArgs: List of zero or more comma-separated call arguments.

src: A register.

signature: Global identifier of a signature. The signature output and input formal arguments must match the
outputArgs and inputArgs specified.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.6. BRIG Syntax for Function Instructions (page 357).

10.8.2 Description

The icall instruction is not supported by the Base profile. See 16.2.1. Base Profile Requirements (page
289).

An indirect call transfers control to the indirect function that corresponds to the indirect function code
handle in src. The indirect function being called has formal arguments matching those of signature.

A host CPU agent can use an HSA runtime query to obtain an indirect function code handle. That code
handle can then be passed into a kernel as a kernel argument or through global segment memory.

Chapter 10. Function Instructions 10.8 Indirect Call (icall) Instruction

Chapter 10. Function Instructions 10.9 Return (ret) Instruction

The results are undefined unless all the following are true:

l src is a valid indirect function code handle obtained from a code object that:

o is currently loaded in the same kernel agent as the currently executing kernel;

o was loaded before the currently executing kernel was launched.

l src refers to an indirect function with formal input and output arguments that match signature.

l src refers to an indirect function that was finalized with the same call convention as the currently
executing kernel.

See 4.2. Program, Code Object, and Executable (page 48).

At the time of finalizing, the actual indirect function that an icall will call at runtime does not have to be
finalized.

Since an indirect call can potentially transfer to more than one target, it can result in control flow divergence
which can introduce a performance issue. The width modifier can be used to specify properties about the
control flow divergence that may result in the finalizer producing more efficient code. See 2.12. Divergent
Control Flow (page 41).

Calls must appear inside of an arg block which is used to pass arguments in and out of the function being
called. This is required even if the functions have no arguments. See 10.2. Function Call Argument Passing
(page 244).

Since the exact indirect function that will be called is not known until runtime, indirect calls are the least
efficient form of function calls.

Example
signature &bar_or_foo_t(arg_u32 %r)(arg_f32 %a);
decl indirect function &bar(arg_u32 %r)(arg_f32 %a);
decl indirect function &foo(arg_u32 %r)(arg_f32 %a);
global_u64 &i;

// The actual indirect function called must have been finalized for
// the same agent and call convention as the finalization of this
// kernel that will be dispatched, before this kernel is launched.
kernel &example_icall(kernarg_u64 %res)
{
ld_global_u64 $d1, [&i];
{
arg_f32 %a;
arg_u32 %r;
st_arg_f32 2.0f, [%a];
// $d1 must contain an indirect function code handle of an
// indirect function that matches the signature &bar_or_foo_t. In
// this case &foo or &bar are the two potential targets.
icall_width(all)_u64 $d1(%r)(%a) &bar_or_foo_t;
ld_arg_u32 $s1, [%r];
ld_kernarg_u64 $d1, [%res];
st_global_u32 $s1, [$d1];

}
};

10.9 Return (ret) Instruction
The return (ret) instruction returns from a function back to the caller's environment. ret can also be used
to exit a kernel.

254 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 255

If there is no ret instruction before the exit of the kernel’s or function's code block, the finalizer will act as if
a ret instruction was present at the end of the code block.

10.9.1 Syntax

Table 10–4 Syntax for ret Instruction

Opcode
ret

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.6. BRIG Syntax for Function Instructions (page 357).

10.9.2 Description

Within a function, a ret instruction inside of divergent control flow causes control to transfer to the end of
the function, where the work-item waits for all the other work-items in the same wavefront. Once all work-
items in a wavefront have reached the end of the function, the function returns.

Within a kernel, a ret instruction inside of divergent control flow causes control to transfer to the end of the
kernel, where the work-item waits for all the other work-items in the same work-group. Once all work-items
in a work-group have reached the end of the kernel, the work-group finishes.

As the return is executed for a function, all values in the return arguments list are copied to the
corresponding actual arguments in the call site.

Example
ret;

10.10 Allocate Memory (alloca) Instruction
The allocate memory (alloca) instruction is used by kernels or functions to allocate per-work-item private
memory at run time.

The allocated memory is freed automatically when the kernel or function exits.

10.10.1 Syntax

Table 10–5 Syntax for Allocate Memory (alloca) Instruction

Opcode Operands
alloca_align(n)_u32 dest, src

Explanation of Modifiers

align(n): Optional. Used to specify the byte alignment of the base of the memory being allocated. If omitted, 1 is
used indicating no alignment. See the Description below.

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination. Must be a 32-bit register.

src: Source. Can be a 32-bit register or immediate value. The value of src is the minimum amount of space (in
bytes) requested.

Chapter 10. Function Instructions 10.10 Allocate Memory (alloca) Instruction

Chapter 10. Function Instructions 10.10 Allocate Memory (alloca) Instruction

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.6. BRIG Syntax for Function Instructions (page 357).

10.10.2 Description

The alloca instruction sets the destination dest to the private segment address of the allocated memory.
The memory can then be accessed with ld_private and st_private instructions.

Whenever a particular alignment of the allocated memory is required, it can be specified by the align(n)
modifier. Valid values of n are 1, 2, 4, 8, 16, 32, 64, 128 and 256. The private segment address returned in
dest is required to be a multiple of n. If align is omitted, the value 1 is used for n, and the returned
address will have no guaranteed alignment. It is recommended to specify an alignment that corresponds to
the natural alignment of the types used to access the memory returned. Using an alignment larger than
necessary may result in lower performance and increased memory usage on some implementations. See
17.8. Unaligned Access (page 295).

The size is specified in bytes. However, an implementation is allowed to allocate more than requested. For
example, the request can be rounded up to ensure that a stack pointer maintains a certain alignment, or to
satisfy the alignment requested. An implementation may also choose to allocate the maximum size
amongst the active work-items in the wavefront so only a single stack pointer per wavefront has to be
maintained. This can result in more private segment memory being required than expected.

The behavior is undefined if not enough private memory is available to satisfy the requested size.

It is not valid to use an alloca instruction in an argument scope. See 10.2. Function Call Argument Passing
(page 244).

Example
alloca_u32 $s1, 24;
alloca_align(8)_u32 $s1, 24;

256 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 257

CHAPTER 11.
Special Instructions

This chapter describes special instructions that can be used to perform various miscellaneous actions and
queries.

11.1 Kernel Dispatch Packet Instructions
The kernel dispatch packet instructions can be used to obtain information about the currently executing
kernel dispatch packet.

11.1.1 Syntax

The table below shows the syntax for the kernel dispatch packet instructions in alphabetical order.

Table 11–1 Syntax for Kernel Dispatch Packet Instructions

Opcodes and Modifier Operands
currentworkgroupsize_u32 dest, dimNumber

currentworkitemflatid_u32 dest

dim_u32 dest

gridgroups_u32 dest, dimNumber

gridsize_uLength dest, dimNumber

packetcompletionsig_signalType dest

packetid_u64 dest

workgroupid_u32 dest, dimNumber

workgroupsize_u32 dest, dimNumber

workitemabsid_uLength dest, dimNumber

workitemflatabsid_uLength dest

workitemflatid_u32 dest

workitemid_u32 dest, dimNumber

Explanation of Modifiers

signalType: Must be sig32 for small machine model and sig64 for large machine model. See Table 4–4 (page 101)
and 2.9. Small and Large Machine Models (page 39).

Length: 32, 64.

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination. For packetcompletionsig and packetid must be a d register; otherwise must be an s register.
See Table 2–3 (page 40).

dimNumber: Source that selects the dimension (X, Y, or Z). 0, 1, and 2 are used for X, Y, and Z, respectively. Must be a
constant value of data type u32. WAVESIZE is not allowed.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.7.1. BRIG Syntax for Kernel Dispatch Packet Instructions (page 358).

Chapter 11. Special Instructions 11.1 KernelDispatch Packet Instructions

Chapter 11. Special Instructions 11.1 KernelDispatch Packet Instructions

11.1.2 Description

currentworkgroupsize

Accesses the work-group size that the currently executing work-item belongs to for the dimNumber
dimension and stores the result in the destination dest. See 2.2. Work-Groups (page 25)

Because the grid is not required to be a multiple of the work-group size, there can be partial work-
groups. The currentworkgroupsize instruction returns the work-group size that the current work-
item belongs to. The value returned by this instruction will only be different from that returned by the
workgroupsize instruction if the current work-item belongs to a partial work-group.

If it is known that the kernel is always dispatched without partial work-groups, then it might be more
efficient to use the workgroupsize instruction.

If the kernel was dispatched with fewer dimensions than dimNumber, then
currentworkgroupsize returns 1 for the unused dimensions.

currentworkitemflatid

Accesses the flattened form of the work-item identifier (ID) within the current work-group and stores
the result in the destination dest. See 2.3.2. Work-Item Flattened ID and Current Work-Item Flattened ID
(page 27).

dim

Returns the number of dimensions in use by this dispatch and stores the result in the destination dest.
See 2.1. Overview of Grids, Work-Groups, and Work-Items (page 23).

gridgroups

Returns the upper bound for work-group identifiers (IDs) (that is, the number of work-groups) within the
grid for the dimNumber dimension and stores the result in the destination dest.

If the grid was launched with fewer dimensions than dimNumber, then gridgroups stores 1 in
destination dest.

gridgroups is always equal to gridsize divided by workgroupsize rounded up to the nearest
integer.

gridsize

Returns the upper bound for work-item absolute identifiers (IDs) within the grid for the dimNumber
dimension and stores the result in the destination dest. Can either be returned as a u32 or u64. If
u32, then the lower 32 bits of the size are returned.

If the grid was launched with fewer dimensions than dimNumber, then gridsize stores 1 in
destination dest.

packetcompletionsig

Returns the signal handle of the completion signal specified for this dispatch in dest. The value may be
0 indicating there is no associated completion signal (see 6.8. Notification (signal) Instructions (page
187)). See HSA Platform System Architecture Specification Version 1.0 section 2.8 Requirement: User Mode
Queuing.

258 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 259

packetid

Returns a 64-bit User Mode Queue packet identifier (packet ID) that is unique for the User Mode Queue
used for this kernel dispatch and stores the result in the destination dest. See HSA Platform System
Architecture Specification Version 1.0 section 2.8 Requirement: User Mode Queuing.

The combination of the queue ID and the packet ID can be used to identify a kernel dispatch within an
application. Debugging tools might find this useful.

workgroupid

Accesses the work-group identifier (ID) within the grid. See 2.2.1. Work-Group ID (page 25).

This instruction computes the three-dimensional ID of the work-group, selects the dimNumber
dimension, and stores the result in the destination dest.

If the grid was launched with fewer than three dimensions, workgroupid returns 0 for the unused
dimensions.

workgroupsize

Accesses the work-group size specified when the kernel was dispatched for the dimNumber dimension
and stores the result in the destination dest. See 2.2. Work-Groups (page 25).

Because the grid is not required to be a multiple of the work-group size, there can be partial work-
groups. If there can be partial work-groups, the currentworkgroupsize instruction should be used
to get the work-group size for the work-group that the currently executing work-item belongs to.

If it is known that the kernel is always dispatched without partial work-groups, then
currentworkgroupsize and workgroupsize will always be the same, and it might be more
efficient to use workgroupsize.

If the kernel was dispatched with fewer dimensions than dimNumber, then workgroupsize stores 1
in destination dest.

workitemabsid

Accesses the work-item absolute identifier (ID) within the entire grid and stores the result for the
dimNumber dimension in the destination dest. Can either be returned as a u32 or u64. If u32 then
the lower 32 bits of the ID are returned. See 2.3.3. Work-Item Absolute ID (page 27).

If the work-group was launched with fewer dimensions than dimNumber, workitemabsid stores 0 in
destination dest.

workitemflatabsid

Accesses the flattened form of the work-item absolute identifier (ID) within the entire grid and stores
the result in the destination dest. Can either be returned as a u32 or u64. If u32 then the lower 32
bits of the ID are returned. See 2.3.4. Work-Item Flattened Absolute ID (page 27).

workitemflatid

Accesses the flattened form of the work-item identifier (ID) within the work-group and stores the result
in the destination dest. See 2.3.2. Work-Item Flattened ID and Current Work-Item Flattened ID (page
27).

Chapter 11. Special Instructions 11.1 KernelDispatch Packet Instructions

Chapter 11. Special Instructions 11.2 Exception Instructions

workitemid

Accesses the work-item identifier (ID) within the work-group and stores the result for the dimNumber
dimension in the destination dest. See 2.3.1. Work-Item ID (page 26).

If the work-group was launched with fewer dimensions than dimNumber, workitemid stores 0 in the
destination dest.

Examples
currentworkgroupsize_u32 $s1, 0; // access the number of work-items in

// the current work-group in the X
// dimension, which might be partial

currentworkitemflatid_u32 $s1; // access the current work-item flat ID
dim_u32 $s3; // dispatch dimensions
gridgroups_u32 $s2, 2; // access the number of work-groups in the

// grid Z dimension
gridsize_u32 $s2, 1; // access the number of work-items in the

// grid Y dimension
gridsize_u64 $d2, 2; // access the number of work-items in the

// grid Z dimension
packetcompletionsig_sig64 $d6; // get current dispatch packet

// completion signal handle
packetid_u64 $d0; // access the dispatch packet ID
workgroupid_u32 $s1, 0; // access the work-group ID in the X dimension
workgroupid_u32 $s1, 1; // access the work-group ID in the Y dimension
workgroupid_u32 $s1, 2; // access the work-group ID in the Z dimension
workgroupsize_u32 $s1, 0; // access the number of work-items in the

// non-partial work-groups in the X dimension
workitemabsid_u32 $s1, 0; // access the work-item absolute ID in the

// X dimension
workitemabsid_u64 $d1, 1; // access the work-item absolute ID in the

// Y dimension
workitemflatabsid_u32 $s1; // access the work-item flat absolute ID
workitemflatabsid_u64 $d1; // access the work-item flat absolute ID
workitemflatid_u32 $s1; // access the work-item flat ID
workitemid_u32 $s1, 0; // access the work-item ID in the X dimension
workitemid_u32 $s1, 1; // access the work-item ID in the Y dimension
workitemid_u32 $s1, 2; // access the work-item ID in the Z dimension

11.2 Exception Instructions
The exception instructions can be used to determine what exceptions have been generated.

11.2.1 Syntax

The table below shows the syntax for the exception instructions in alphabetical order.

Table 11–2 Syntax for Exception Instructions

Opcodes and Modifier Operands
cleardetectexcept_u32 exceptionsNumber

getdetectexcept_u32 dest

setdetectexcept_u32 exceptionsNumber

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination. Must be an s register. See Table 2–3 (page 40).

exceptionsNumber: Source that specifies the set of exceptions. bit:0=INVALID_OPERATION, bit: 1=DIVIDE_BY_ZERO,
bit:2=OVERFLOW, bit:3=UNDERFLOW, bit:4=INEXACT; all other bits are ignored. Must be a constant value of data
type u32. WAVESIZE is not allowed.

260 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 261

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.7.2. BRIG Syntax for Exception Instructions (page 358).

11.2.2 Description

cleardetectexcept

Clears DETECT exception flags specified in exceptionsNumber for the wavefront containing the
work-item. The result is undefined if the instruction is not wavefront execution uniform (see 2.12.
Divergent Control Flow (page 41)), and might lead to deadlock.

getdetectexcept

Returns the current value of DETECT exception flags, which is a summarization for all work-items in the
wavefront containing the work-item, and stores the result in the destination dest. The bits in the result
indicate if that exception has been generated in any work-item within the wavefront containing the
current work-item, as modified by any preceding cleardetectexcept or cleardetectexcept
instructions executed by any work-item in the wavefront containing the current work-item. The bits
correspond to the exceptions as follows: bit 0 is INVALID_OPERATION, bit 1 is DIVIDE_BY_ZERO, bit 2 is
OVERFLOW, bit 3 is UNDERFLOW, bit 4 is INEXACT, and other bits are ignored. The result is undefined if
the instruction is not wavefront execution uniform (see 2.12. Divergent Control Flow (page 41)), and
might lead to deadlock.

setdetectexcept

Sets DETECT exception flags specified in exceptionsNumber for the wavefront containing the
current work-item. The result is undefined if the instruction is not wavefront execution uniform (see
2.12. Divergent Control Flow (page 41)), and might lead to deadlock.

11.2.3 Additional Information

DETECT exception processing operates on the five exceptions specified in 12.2. Hardware Exceptions (page
269)).

DETECT exception processing is performed independently for each wavefront. Each wavefront conceptually
maintains a 5-bit exception_detected field which is initialized to 0 before the wavefront starts executing. This
field can be implemented in group memory and so might reduce the amount of memory available for group
segment variables. However, an implementation is free to implement the semantics implied by the
cleardetectexcept, setdetectexcept, and getdetectexcept instructions in any way it
chooses, including by using dedicated hardware.

If any of the five exceptions occurs in any work-item of the wavefront, the bit corresponding to the exception
is conceptually set in the exception_detected field.

The cleardetectexcept, setdetectexcept, and getdetectexcept instructions conceptually
operate on the exception_detected field, and their execution must be wavefront uniform. If they are used
inside of wavefront divergent control flow, the result is undefined, and might lead to deadlock. These
instructions can be used in a loop, provided the loop introduces no wavefront divergent control flow. This
requires that all work-items in the wavefront execute the loop the same number of iterations. See 2.12.
Divergent Control Flow (page 41).

Chapter 11. Special Instructions 11.2 Exception Instructions

Chapter 11. Special Instructions 11.3 User Mode Queue Instructions

The wavefront exception_detected field is not implicitly saved when the work-items of the wavefront complete
execution. If the user wants to save the value, then explicit HSAIL code must be used. For example, the
kernel might perform a getdetectexcept instruction at the end and atomically or the result into a
global memory location specified by a kernel argument. This will accumulate the results from all wavefronts
of a kernel dispatch.

When a kernel is finalized, the set of exceptions that are enabled for DETECT can be specified. In addition,
they can be specified in the kernel by the enabledetectexceptions control directive (see 13.4. Control
Directives for Low-Level Performance Tuning (page 278)). The exceptions enabled for DETECT is the union
of both these sources.

If any function that the kernel calls, either directly or indirectly, has an enabledetectexceptions
control directive that includes exceptions not specified by either the kernel's enabledetectexceptions
control directive or the finalizer option, then it is undefined if those exceptions will be enabled for DETECT.

An implementation is only required to correctly report DETECT exceptions that were enabled when the
kernel was finalized. It is implementation defined if exceptions not enabled for DETECT when the kernel was
finalized are correctly reported.

On some implementations, if one or more exceptions are enabled for DETECT, the code produced might
have lower performance than if no exceptions were enabled for DETECT. However, an implementation
should attempt to make the performance near that of a kernel finalized with no exceptions enabled for
DETECT.

If any exceptions are enabled for the DETECT policy, there are some restrictions on the optimizations that
are permitted by the finalizer. In general, the intent is that effective optimization can still be performed
according to the optimization level specified to the finalizer. See 17.13. Exceptions (page 296).

Examples
cleardetectexcept_u32 1; // clear DETECT policy flags
getdetectexcept_u32 $s1; // get DETECT policy flags
setdetectexcept_u32 2; // set DETECT policy flags

11.3 User Mode Queue Instructions
The User Mode Queue instructions can be used to enqueue work to be executed by other agents. See HSA
Platform System Architecture Specification Version 1.0 section 2.8 Requirement: User Mode Queuing.

11.3.1 Syntax

The table below shows the syntax for the User Mode Queue instructions in alphabetical order.

Table 11–3 Syntax for Exception Instructions

Opcodes and Modifier Operands
addqueuewriteindex_segment_order_u64 dest, address, src

casqueuewriteindex_segment_order_u64 dest, address, src0, src1

ldqueuereadindex_segment_order_u64 dest, address

ldqueuewriteindex_segment_order_u64 dest, address

stqueuereadindex_segment_order_u64 address, src

stqueuewriteindex_segment_order_u64 address, src

262 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 263

Explanation of Modifiers

segment: Optional segment. If omitted, flat is used. Only flat and global is allowed. See 2.8. Segments (page 31).

order: Memory order used to specify synchronization. See 6.2.1. Memory Order (page 169).

Length: 32, 64. Must match the address size for the global segment (see Table 2–3 (page 40).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination. Must be a d register.

src, src0, src1: Sources. Can be a register or immediate value.

address: Address expression for an address in the specified segment for a User Mode Queue created by the HSA
runtime (see 4.18. Address Expressions (page 106)).

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.7.3. BRIG Syntax for User Mode Queue Instructions (page 358).

11.3.2 Description

addqueuewriteindex

Atomically adds the unsigned 64-bit value in src to the current value of the write index associated with
the User Mode Queue with address specified by address. Returns the original unsigned 64-bit User
Mode Queue Packet ID (Packet ID) value of the write index in dest. The new value of the write index
must be greater than or equal to the original value: adding a value that causes the write index to wrap is
undefined. The add is performed as if a read-modify-write atomic memory operation, to the global
segment, at system scope, with memory ordering specified by order which can be rlx (relaxed),
scacq (sequentially consistent acquire), screl (sequentially consistent release) or scar (sequentially
consistent acquire release). Can be used to allocate zero or more packet slots in a User Mode Queue
when there are multiple producer agents.

casqueuewriteindex

Atomically compares src0 to the current value of the write index associated with the User Mode
Queue with address specified by address, and if the values are the same sets the write index to src1.
Returns the original value of the write index in dest. The src0, src1 and dest are unsigned 64-bit
User Mode Queue Packet IDs (Packet ID). src1 must be greater than or equal to src0. The compare-
and-swap is performed as a read-modify-write atomic memory operation, to the global segment, at
system scope, with memory ordering specified by order which can be rlx (relaxed), scacq
(sequentially consistent acquire), screl (sequentially consistent release) or scar (sequentially
consistent acquire release). Can be used to allocate zero or more packet slots in a User Mode Queue in
conjunction with the ldqueuewriteindex when there are multiple producer agents.

ldqueuereadindex

Atomically loads the current value of the read index associated with the User Mode Queue with address
specified by address into dest. The value is an unsigned 64-bit User Mode Queue Packet ID (Packet
ID) for the next packet slot in the User Mode Queue to be consumed. The load is performed as an
atomic memory operation, to the global segment, at system scope, with memory ordering specified by
order which can be rlx (relaxed) or scacq (sequentially consistent acquire). Can be used in
conjunction with ldqueuewriteindex to determine how may User Mode Queue slots are available.

Chapter 11. Special Instructions 11.3 User Mode Queue Instructions

Chapter 11. Special Instructions 11.4 Miscellaneous Instructions

ldqueuewriteindex

Atomically loads the current value of the write index associated with the User Mode Queue with
address specified by address into dest. The value is an unsigned 64-bit User Mode Queue Packet ID
(Packet ID) for the next packet slot in the User Mode Queue to be allocated. The load is performed as an
atomic memory operation, to the global segment, at system scope, with memory ordering specified by
order which can be rlx (relaxed) or scacq (sequentially consistent acquire). Can be used in
conjunction with ldqueuereadindex to determine how many User Mode Queue slots are available.

stqueuereadindex

Atomically stores src into the read index associated with the User Mode Queue with address specified
by address. The value is an unsigned 64-bit User Mode Queue Packet ID (Packet ID) and must be
greater than or equal to the current value of the read index. The store is performed as an atomic
memory operation, to the global segment, at system scope, with memory ordering specified by order
which can be rlx (relaxed) or screl (sequentially consistent release). Only permitted on User Mode
Queues that are not associated with a kernel agent to indicate zero or more packet slots are being
processed or have been completed. For example, to implement a User Mode Queue that supports
agent dispatch packets for use as a service queue. Not permitted with User Mode Queues that are
associated with a kernel agent for which only the associated packet processor is permitted to update
the read index.

stqueuewriteindex

Atomically stores src into the write index associated with the User Mode Queue with address specified
by address. The value is an unsigned 64-bit User Mode Queue Packet ID (Packet ID) and must be
greater than or equal to the current value of the write index. The store is performed as an atomic
memory operation, to the global segment, at system scope, with memory ordering specified by order
which can be rlx (relaxed) or screl (sequentially consistent release). Can be used to allocate zero or
more packet slots in a User Mode Queue when there is only a single producer agent.

Examples
ldqueuewriteindex_global_rlx_u64 $d3, [$d2]; // load queue write index
add_u64 $d4, $d3, 1;
casqueuewriteindex_global_scar_u64 $d1, [$d2], $d3, $d4;

// compare-and-swap queue write index
addqueuewriteindex_global_rlx_u64 $d1, [$d2], 2; // add to queue write index
ldqueuereadindex_global_scacq_u64 $d5, [$d2]; // load queue read index
stqueuereadindex_global_screl_u64 [$d2], $d4; // store queue read index to a non-HSA

// component User Mode Queue
stqueuewriteindex_global_screl_u64 [$d2], $d4; // store queue write index

11.4 Miscellaneous Instructions
The miscellaneous instructions include various query and special operations.

11.4.1 Syntax

The table below shows the syntax for the miscellaneous instructions in alphabetical order.

264 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 265

Table 11–4 Syntax for Miscellaneous Instructions

Opcodes and Modifier Operands
clock_u64 dest

cuid_u32 dest

debugtrap_u32 src

groupbaseptr_u32 dest

kernargbaseptr_uLength dest

laneid_u32 dest

maxcuid_u32 dest

maxwaveid_u32 dest

nop

nullptr_segment_uLength dest

waveid_u32 dest

Explanation of Modifiers

Length: 32, 64. Must match the address size for the associated segment: for nullptr it is the segment specified;
and for kernargbaseptr it is the kernarg segment (see Table 2–3 (page 40)).

segment: Optional segment. If omitted, flat is used. Can be flat, group, private, and kernarg. See 2.8. Segments
(page 31).

Explanation of Operands (see 4.16. Operands (page 104))

dest: Destination. For nullptr must be a register with a size that matches the address size of the segment or flat
address; for clock must be a d register; otherwise must be an s register. See Table 2–3 (page 40).

src: Source. Can be a register or immediate value.

Exceptions (see Chapter 12. Exceptions (page 269))

No exceptions are allowed.

For BRIG syntax, see 18.7.7.4. BRIG Syntax for Miscellaneous Instructions (page 359).

11.4.2 Description

clock

Stores the current value of a 64-bit unsigned system timestamp in a d register specified by the
destination dest. All agents in the HSA system are required to provide a uniform view of time which
must not roll over. The system timestamp must count at a constant increment rate in the range 1-
400MHz, and the HSA runtime can be queried to determine the frequency. The system timestamp is
defined in the HSA Platform System Architecture Specification.

The clock instruction is treated as if it is a read-modify-write relaxed atomic memory instruction (see
6.2. Memory Model (page 169)). This ensures that the clock instruction will not give unexpected
results due to being drastically moved as a result of optimization, but still allows optimization to be
performed. Consequently:

l A clock instruction cannot be moved (by the implementation) before a preceding acquire
memory instruction in the same work-item.

Chapter 11. Special Instructions 11.4 Miscellaneous Instructions

Chapter 11. Special Instructions 11.4 Miscellaneous Instructions

l A clock instruction cannot be moved (by the implementation) after a following release memory
instruction in the same work-item.

l The order of two clock instructions cannot be changed (by the implementation).

l Multiple clock instructions cannot be combined (by the implementation) to a single instruction,
including hoisting out of a loop.

cuid

Returns a 32-bit unsigned number identifying the compute unit on which the work-item is currently
executing and stores the result in the destination dest. The result is a number between 0 and
maxcuid. cuid is helpful in determining the load balance of a kernel. Implementations are allowed to
move in-flight computations between compute units, so the value returned can be different each time
cuid is executed.

debugtrap

Halts execution of the wavefront executing the instruction and generates a debug exception. See 12.4.
Debug Exceptions (page 272).

If the optional HSA runtime debug interface is not present, or present and not active, the User Mode
Queue executing the kernel dispatch will also be put into an error state. This will terminate all kernel
dispatches executing on that queue. See 12.5.1. HSA Runtime Debug Interface Not Active (page 272).

If the optional HSA runtime debug interface is present and is active, the behavior is controlled by the
debug interface. See 12.5.2. HSA Runtime Debug Interface Active (page 272). The value of the source
operand src is accessible using the debug interface and could be used to identify the reason for the
trap. The meaning of the value is user defined. For example, the values could be defined by a high level
language implementation and used by that implementation’s compiler, runtime, and debugger.

groupbaseptr

Returns the group segment address of the base of the group segment for the work-group of the work-
item executing the instruction, and stores the result in the destination dest. All group segment
variables used by the kernel, and the functions it calls directly or indirectly, are allocated within the
group segment address range starting at offset 0 from the group segment base up to the group
segment size reported when the kernel was finalized. Note, since all variables must have a segment
and flat address that is naturally aligned or specified by the alloc variable qualifier (see 4.3.10.
Declaration and Definition Qualifiers (page 69)), the group segment base address will always be aligned
to the maximum alignment of the group segment variables used by the kernel.

If the kernel dispatch uses dynamic group memory, it is allocated by setting a group segment size in the
kernel dispatch packet that is larger than the size reported when the kernel was finalized. The base of
the dynamically allocated group memory for the work-group of a work-item is obtained by adding the
group segment size reported when the kernel was finalized, to the group segment address returned by
this instruction. See 4.20. Dynamic Group Memory Allocation (page 112).

266 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 267

kernargbaseptr

Returns the kernarg segment address of the base of the kernarg segment for the kernel dispatch being
executed, and stores the result in the destination dest. The first kernarg segment variable is allocated
at offset 0 relative to this base address. The address will be at least 16-byte aligned. Additionally, if any
of the kernarg segment variables have align(n) qualifiers (see 4.3.10. Declaration and Definition
Qualifiers (page 69)) with n larger than 16, then the returned address will have alignment at least the
maximum n specified. See 4.21. Kernarg Segment (page 114).

For example, can be used in functions called directly or indirectly by a kernel dispatch to directly access
the kernel arguments.

laneid

Returns the identifier (ID) of the work-item's lane within the wavefront, a number between 0 and
WAVESIZE - 1, and stores the result in the destination dest.

The compile-time macro WAVESIZE can be used to generate code that depends on the wavefront size.

maxcuid

Returns the number of compute units -1 for this kernel agent and stores the result in the destination
dest. For example, if a kernel agent has four compute units, maxcuid will be 3.

maxwaveid

Returns the number of wavefronts -1 that can run at the same time on a compute unit and stores the
result in the destination dest. All compute units of a kernel agent must support the same value for
maxwaveid. For example, if a maximum of four wavefronts can execute at the same time on a
compute unit, maxwaveid will be 3.

nop

A NOP (no operation). Used to leave space in an HSAIL program.

nullptr

Sets the destination dest to a value that is not a legal address within the segment. If segment is
omitted, dest is set to the value of the null pointer value for a flat address.

The flat address null pointer value is the same for all agents, including host CPU agents, and is
dependent on the host operating system.

The null pointer value used for the global and readonly segment is the same as that used for a flat
address.

The arg and spill segments do not have a null pointer value since the address of variables in these
segments cannot be obtained with the lda instruction.

The null pointer value for the group, private, and kernarg segments is agent dependent and different
agents may use different values.

The implementation is required to ensure no segment variable is allocated, and no memory segment
allocator will return an address, with the null pointer value used by the specified segment.

Chapter 11. Special Instructions 11.4 Miscellaneous Instructions

Chapter 11. Special Instructions 11.4 Miscellaneous Instructions

An HSA runtime query is available to obtain the null pointer value for the group, private, and kernarg
segments for each agent. The host operating system provides the value used for the null pointer value
for a flat address

waveid

Returns an identifier (ID) for the wavefront on this compute unit, a number between 0 and maxwaveid,
and stores the result in the destination dest.

For example, if a maximum of four wavefronts can execute at the same time on a compute unit, the
possible waveid values will be 0, 1, 2, and 3.

The value is unique across all currently executing wavefronts on the same compute unit. The number
will be reused when the wavefront is finished and a new wavefront starts.

Implementations are allowed to move in-flight computations within and between compute units, so the
value returned can be different each time waveid is executed.

Programs might use this value to address non-persistent global storage.

Examples
clock_u64 $d6; // return the current time
cuid_u32 $s0; // access the compute unit id within the kernel agent
debugtrap_u32 $s1; // halt execution and transfer control to debugger if debug

// interface is active
groupbaseptr_u32 $s2; // base address for group segment
kernargbaseptr_u64 $d2; // base address for kernarg segment
laneid_u32 $s1; // access the lane ID
maxcuid_u32 $s6; // access number of compute units on the kernel agent
maxwaveid_u32 $s4; // access the maximum number of wavefronts that can be executing

// at the same time by the kernel agent
nop; // no operation
nullptr_group_u32 $s0; // null pointer value for group segment
nullptr_u64 $d1; // null pointer value for a flat address or global segment
waveid_u32 $s3; // access the wavefront ID within the kernel agent

268 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 269

CHAPTER 12.
Exceptions

This chapter describes HSA exception processing.

12.1 Kinds of Exceptions
Three kinds of exceptions are supported:

l Hardware-detected exceptions such as divide by zero. See 12.2. Hardware Exceptions (below).

l Software-triggered exceptions corresponding to higher-level catch and throw operations. HSAIL
provides no special instructions for handling software exceptions. They can be implemented in terms
of the HSAIL branch instructions.

l Debug exceptions generated by debugtrap or as a consequence of actions performed by the
optional HSA runtime debug interface. See 12.4. Debug Exceptions (page 272).

12.2 Hardware Exceptions
HSAIL defines a set of exceptions, and provides a mechanism to control these exceptions by means of
hardware exception policies (see 12.3. Hardware Exception Policies (page 271)). The exception policies are
specified when a kernel is finalized and cannot be changed at runtime.

HSAIL requires the hardware to generate the exceptions, as defined by the HSAIL instructions, that are
enabled for at least one of the exception policies. The hardware is not required to generate exceptions that
are not enabled for any exception policy.

The exceptions include the five floating-point exceptions specified in IEEE/ANSI Standard 754-2008. HSAIL
also allows, but does not require, an implementation to generate a divide by zero exception if integer
division or remainder with a divisor of zero is performed.

For the Base profile (see 16.2.1. Base Profile Requirements (page 289)), it is not permitted to enable any of
the exception policies for the five floating-point exceptions.

HSAIL also allows, but does not require, an implementation to generate other exceptions, such as invalid
address and memory exception. However, HSAIL does not provide support to control these exceptions by
means of the HSAIL exception policies. If such exceptions are generated, it is implementation defined if the
exception is signaled. See 12.5. Handling Signaled Exceptions (page 272). If the implementation does not
signal the exception, or if execution is resumed after being halted due to signaling the exception, the value
returned by the associated instruction is undefined. For example, a load from an address of a non-existent
memory page can return an undefined value.

The exceptions supported by the HSAIL exception policies are:

l Overflow

The floating-point exponent of a value is too large to be represented. See 4.19.2. Floating-Point
Rounding (page 109).

Chapter 12. Exceptions 12.1 Kinds of Exceptions

Chapter 12. Exceptions 12.2 Hardware Exceptions

l Underflow

A non-zero tiny floating-point value is computed and either:

o the ftz modifier was specified,

o or the ftz modifier was not specified and the value cannot be represented exactly.

See 4.19.2. Floating-Point Rounding (page 109).

l Division by zero

A finite non-zero floating-point value is divided by zero.

It is implementation defined whether integer div or rem instructions with a divisor of zero will
generate a divide by zero exception.

See 4.19.2. Floating-Point Rounding (page 109).

l Invalid operation

Instructions are performed on values for which the results are not defined. These are:

o Operations on signaling NaN floating-point values.

o Signaling comparisons: comparisons on quiet NaN floating point values.

o Multiplication: mul(0.0, infinity) or mul(infinity, 0.0).

o Fused multiply add: fma(0.0, infinity, c) or fma(infinity, 0.0, c) unless c is a quiet NaN, in which
case it is implementation defined if an exception is generated.

o Addition, subtraction, or fused multiply add: magnitude subtraction of infinities, such as: add
(positive infinity, negative infinity), sub(positive infinity, positive infinity).

o Division: div(0.0, 0.0) or div(infinity, infinity).

o Square root: sqrt(negative).

o Conversion: A cvt with a floating-point source type, an integer destination type, and a
nonsaturating rounding mode, when the source value is a NaN, infinity, or the rounded value,
after any flush to zero, cannot be represented precisely in the integer type of the destination.

l Inexact

A computed floating-point value is not represented exactly in the destination. This can occur:

o Due to rounding. See 4.19.2. Floating-Point Rounding (page 109).

o In addition, it is implementation defined whether instructions with the ftz modifier that
cause a value to be flushed to zero generate the inexact exception. See 4.19.3. Flush to Zero
(ftz) (page 110).

This exception is very common.

In addition, the native floating-point operations may generate exceptions. However, it is implementation
defined if, and which, exceptions they generate. For example, the nlog2 instruction may generate a divide
by zero exception when given the value 0.

270 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 271

12.3 Hardware Exception Policies
HSA supports DETECT and BREAK policies for each of the five exceptions specified in 12.2. Hardware
Exceptions (page 269). Whether either exception policy is supported by a kernel agent depends on the
profile specified (see 16.2. Profile-Specific Requirements (page 289)).

l DETECT

A compute unit must maintain a status bit for each of the five supported hardware exceptions for
each work-group it is executing. All status bits are set to 0 at the start of a work-group. If an
exception is generated in any work-item, the corresponding status bit will be set for its work-group.
The cleardetectexcept, getdetectexcept, and setdetectexcept instructions can be
used to read and write the per work-group status bits.

The DETECT policy is independent of the BREAK policy.

In order that DETECT exceptions are correctly reported, it is necessary to specify them when the
finalizer is invoked, or in an enabledetectexceptions control directive in the kernel.

See 11.2. Exception Instructions (page 260).

l BREAK

A work-item must signal an exception if it executes an instruction that generates an exception that is
enabled by the BREAK policy. See 12.5. Handling Signaled Exceptions (next page).

When the finalizer is invoked, or in an enablebreakexceptions control directive in the kernel, it
must be specified which exceptions can be enabled for BREAK when it is dispatched. It is undefined
whether an exception enabled for BREAK when a kernel was finalized will correctly signal an
exception if it occurs, unless all external functions called directly or indirectly by the kernel are also
finalized with that exception enabled for BREAK.

Specifying one or more exceptions to be enabled for the BREAK policy might result in code that
executes with lower performance.

If any exceptions are enabled for the BREAK policy, there are some restrictions on the optimizations
that are permitted by the finalizer. In general, the intent is that effective optimization can still be
performed according to the optimization level specified to the finalizer. See 17.13. Exceptions (page
296).

If an exception is generated that is not enabled for the BREAK policy, or if execution is resumed after having
been halted due to generation of either the same or different exception that is enabled for the BREAK policy,
then execution continues after updating of the DETECT status bit if the DETECT policy is enabled for that
exception. The instruction generating the exception completes and produces the result specified for that
exceptional case. Generating an exception does not affect execution unless the BREAK policy is enabled for
that exception, and execution is not resumed, except for the side effect of updating the corresponding
DETECT bit if the DETECT policy is enabled for that exception, or any side effects resulting from halting
execution due to an exception enabled for the BREAK policy.

No HSAIL instructions can be used to change which exceptions are enabled for the DETECT or BREAK policy
at runtime. That can only be specified at finalize time through the enable detect and enable break
exceptions arguments specified when the finalizer is invoked, or an enabledetectexceptions or
enabledetectexceptions control directive in the kernel, or any functions it calls directly or indirectly,
being finalized.

Chapter 12. Exceptions 12.3 Hardware Exception Policies

Chapter 12. Exceptions 12.4 DebugExceptions

12.4 Debug Exceptions
Debug exceptions include those generated by the debugtrap instruction (see Chapter 11. Special
Instructions (page 257)), and those the optional HSA runtime debug interface may cause to be generated if
it is active (for example, due to inserted breakpoints, single stepping machine instructions, or profile counter
events.

When a debug exception is generated it always signals the exception. See 12.5. Handling Signaled
Exceptions (below). If the optional HSA runtime debug interface is active and causes execution to be
resumed after being halted due to signaling the exception, execution continues as if the exception had not
been signaled, except for any side effects resulting from halting execution.

12.5 Handling Signaled Exceptions
If an exception is signaled, the behavior depends on if the HSA runtime debug interface is active.

12.5.1 HSA Runtime Debug Interface Not Active

If the HSA runtime debug interface is not active, a wavefront that executes an instruction that signals an
exception must halt execution of the wavefront. In reasonable time, the kernel agent executing the
wavefront must stop initiating new wavefronts for all dispatches executing on the same User Mode Queue,
and must ensure that all wavefronts currently being executed for those dispatches either complete, or are
halted. Any dispatches that complete will have their completion signal updated as normal, however, any
dispatch that do not complete the execution of all their associated wavefronts will not have their completion
signal updated. The User Mode Queue will then be put into the error state. It is not possible to resume the
wavefronts of any of the affected dispatches.

12.5.2 HSA Runtime Debug Interface Active

The HSA Runtime Programmer’s Reference Manual Version 1.0 does not define a standard HSA runtime debug
interface. However, the HSA runtime may optionally provide an implementation dependent debug interface.

As guidance, the following section provides an example of the functionality that a debug interface may
provide. A future version of the HSA runtime may define a standard debug interface that may differ from
that described below.

12.5.2.1 Sample Debug Interface

If the HSA runtime debug interface is active, a signaled exception causes the wavefront that executed the
instruction to be halted and information about the exception is available through the debug interface. The
debugger interface may optionally have the capability to halt other wavefronts, inspect the execution state
of halted wavefronts, modify the execution state of halted wavefronts, or resume the execution of halted
wavefronts.

In addition, the HSA runtime can put a User Mode Queue into an error state which will terminate all
wavefronts associated with dispatch packets currently executing on it whether or not they are halted.

The following text provides more details:

When a machine instruction is executed by the enabled work-items of a wavefront, the wavefront must be
halted if any enabled work-item of the wavefront signals an exception. The machine instruction that signaled
the exception is termed the excepting machine instruction. If a wavefront is halted, it does not affect the
execution of other wavefronts.

272 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 273

Execution is halted at a machine instruction boundary; this is not required to be at an HSAIL instruction
boundary. The machine instruction that a wavefront was executing when the wavefront was halted is
termed the halted machine instruction.

The halted machine instruction for all work-items that executed an excepting machine instruction must be
the excepting machine instruction. The work-items that execute an excepting machine instruction are
termed the excepting work-items. The wavefronts containing the excepting work-items are termed the
excepting wavefronts. The enabled work-items of the excepting wavefronts that are not excepting work-
items are termed non-excepting work-items.

The debugger interface may optionally provide the ability to also halt other wavefronts. For example, it could
halt all the other wavefronts currently executing the same kernel dispatch as the excepting wavefronts.
These wavefronts are termed non-excepting wavefronts. The work-items they contain are also termed non-
excepting work-items. This functionality might be useful to a high level debugger.

For each of the excepting work-items, it is required that the machine state must be as if the excepting
machine instruction had never executed. This includes updating of machine registers, writing to memory,
setting the DETECT exception bits, and updating any other machine state. It is required to indicate the set of
excepting work-items, together with the set of exceptions each signaled.

A single excepting work-item may generate more than one exception. All exceptions enabled for the BREAK
policy must be included, together with any other exceptions that the excepting instruction signaled. For the
debugtrap exception, the value of the work-item's source operand must also be specified.

All non-excepting work-items, whether in an excepting wavefront or nonexcepting wavefront, that are
enabled are required to behave as if either: they had not executed the halted machine instruction and
therefore not modified machine state, including setting any DETECT exception status bits; or they had
completed execution of the halted machine instruction and modified the machine state including any
DETECT exception status bits. They are not allowed to only partially update the machine state.

For both excepting and non-excepting wavefronts that have been halted, it is required to provide an
indication of which work-items are enabled, and for enabled work-items which have completed execution of
the halted machine instruction, and which are as if they had not executed the halted machine instruction. It
is allowed for a wavefront to have some enabled work-items that have completed, and some that have not
completed, the halted machine instruction.

The debugger interface may optionally have the ability to modify the machine state of work-items in a halted
wavefront. This includes updating of machine registers, writing to memory, setting the DETECT exception
bits, updating any other machine state. For enabled work-items it also includes changing the work-item to
indicate that it is as if the excepting machine instruction had completed execution.

The debugger interface may optionally have the ability to resume the execution of halted wavefronts. For
each wavefront resumed, it is required that all enabled work-items that are as if the halted machine
instruction had not been completed, will first complete execution of the halted machine instruction, before
all enabled work-items in the wavefront continue execution with the next machine instruction.

Chapter 12. Exceptions 12.5 Handling Signaled Exceptions

Chapter 13. Directives 13.1 extension Directive

CHAPTER 13.
Directives

This chapter describes the directives.

13.1 extension Directive
The extension directive enables additional opcodes that can be used in the module. It must appear after
the module header but before the first HSAIL module statement (see 4.3. Module (page 53)). This allows a
finalizer to identify all extensions by only inspecting the directives at the start of a module: it does not need
to scan the entire module.

An extension directive applies to all kernels and functions in the module. An extension only applies to the
module in which it appears. Other modules are allowed to have different extensions.

The syntax is:

extension string

The string is the name of the extension. An extension with an empty string is ignored.

For example, if a finalizer from a vendor named foo was to support an extension named bar, an application
could enable it using code like this:

extension "foo:bar";

If a kernel agent does not support an extension that is enabled in a module, then the finalizer for that kernel
agent must report an error.

An HSA runtime operation can be used to query if a kernel agent supports a particular extension, and to get
the list of extensions it supports.

13.1.1 extension CORE

The "CORE" extension specifies that no extensions are allowed in the module in which it appears:

extension "CORE";

If the "CORE" extension directive is present, the only other extension directives allowed in the same
module are other "CORE" directives. Otherwise, multiple non-"CORE" extension directives are allowed
in a module: a finalizer must enable all opcodes for all extension directives that specify the vendor of the
finalizer for the module.

13.1.2 extension IMAGE

The "IMAGE" extension specifies that the HSAIL image instructions defined in Chapter 7. Image
Instructions (page 194) are allowed in the module in which it appears:

extension "IMAGE";

274 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 275

If the "IMAGE" extension directive is not present, then the following HSAIL instructions are not allowed in
the module in which it appears:

l rdimage

l ldimage

l stimage

l queryimage

l querysampler

l imagefence

In addition, the data types of roimg, woimg, rwimg, and samp are also not allowed. They cannot be used:
to declare and define variables or specify initializers; cannot be used in kernel, function, and signature
formal arguments; and cannot be used with the ld, st, and mov instructions, including passing function
arguments.

13.1.3 How to Set Up Finalizer Extensions

HSAIL opcodes are 16 bits in the BRIG binary format. Values 0 through 0x7FFF are reserved for HSA use, but
values 0x8000 to 0xFFFF are available for vendor defined extensions.

For example, assume that a particular vendor xyz has implemented an extension called newext that
provides a max3 instruction which returns the maximum value of three floating-point inputs. The vendor’s
finalizer could choose to number the opcode for this instruction 0x8000. The HSAIL code that uses the
extension would be:

module &ext:1:0:$full:$large:$default;
extension "xyz:newext";
kernel &max3Vector(kernarg_u32 %A,

kernarg_u32 %B,
kernarg_u32 %C,
kernarg_u32 %D)

{
workitemabsid_u32 $s0, 0; // s0 is the absolute ID
mul_u32 $s0, $s0, 4; // 4* absolute ID (into bytes)

ld_kernarg_u32 $s4, [%A];
add_u32 $s1, $s0, $s4;
ld_global_f32 $s10, [$s1];

ld_kernarg_u32 $s4, [%B];
add_u32 $s1, $s0, $s4;
ld_global_f32 $s11, [$s1];

ld_kernarg_u32 $s4, [%C];
add_u32 $s1, $s0, $s4;
ld_global_f32 $s12, [$s1];

// The finalizer supports new opcode:
newext_max3_f32 $s11, $s10, $s11, $s12;

ld_kernarg_u32 $s4, [%D];
add_u32 $s10, $s0, $s4;
st_global_f32 $s10, [$s10];
ret;

};

If the finalizer does not support the extension, it must return an error when finalizing the module.

Chapter 13. Directives 13.1 extension Directive

Chapter 13. Directives 13.2 loc Directive

13.2 loc Directive
Use the loc directive to specify the line and column number in a source file that corresponds to the following
HSAIL. The source line number specified is not incremented in response to new lines in the following HSAIL
text. Instead, the same source position applies to all the following HSAIL, regardless of line breaks, up to the
next loc directive or end of the module.

The syntax is:

loc linenum [column] [filename];

linenum is the line number within that file. It is specified as an integer constant of type u64 and must be in
the right-open interval [1, 232). WAVESIZE is not allowed. The first line of the file is numbered 1.

column is an optional column within the line. It is specified as an integer constant of type u64 and must be
in the right-open interval [1, 232). WAVESIZE is not allowed. The first column of a line is numbered 1. If
omitted defaults to 1.

filename is a string surrounded by quotes. If omitted defaults to the file name used in the nearest
preceding loc directive within the module that does specify a file name, or the empty string if there is no
such loc directive.

For example:

loc 20 "file.hsail" ; // Line 20, column 1 in file with name file.hsail.
loc 20 10 "file.hsail"; // Line 20, column 10 in file with name file.hsail.
loc 30; // Line 30, column 1 in the file mentioned by the previous loc directive.

13.3 pragma Directive
The pragma directive can be used to pass information to the finalizer, or used by other components that
process HSAIL. For example, it could be used to encode information about kernel arguments and symbolic
variable initializers that is used by a high level language runtime.

Figure 13–1 pragma Syntax Diagram

276 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 277

Figure 13–2 pragmaOperand Syntax Diagram

The pragma directive can appear anywhere in the HSAIL code that an annotation can appear (see 4.3.1.
Annotations (page 55)). A pragma that is not recognized by the finalizer or other HSAIL consumer must be
ignored and does not cause an error.

A pragma operand can be:

l A string. See 4.5. Strings (page 76).

l An immediate operand. This includes integer constants that are treated as u64, double constants
that are treated as f64, single constants that are treated as f32, half constants that are treated as
f16, typed constants that are treated as the type of the constant, and WAVESIZE that is treated as
u64. Note that all typed constants are allowed, including opaque types and arrays. See 4.8.
Constants (page 81).

l An aggregate constant. This is treated as an array of b8 the byte size of the aggregate constant. See
4.8.4. Aggregate Constants (page 91).

l An identifier. This includes the identifier of a variable, fbarrier, kernel, function, signature, module,
register, and label. See 4.6. Identifiers (page 77) and 4.7. Registers (page 79).

Note, that any identifier used in a pragma operand must be in scope. For example, pragmas that reference
formal argument identifiers must be in the code block of the corresponding function or kernel; and pragmas
that reference the identifier of a variable must come after a declaration or definition of the variable. See
4.6.2. Scope (page 78).

If the pragma applies to a kernel or function, then it must be placed in the kernel or function scope, and only
applies to that kernel or function. This allows the finalizer to locate all pragmas for a kernel or function
without having to read all module scope directives. It also allows an HAIL linker to process functions
independently, because no pragmas outside the function can alter its behavior.

The finalizer or other HSAIL consumer implementation defines rules for what portion of the kernel or
function the pragma applies to and what happens if the same pragma appears multiple times.

The finalizer or other HSAIL consumer implementation determines the interpretation of pragma directives.
This includes determining what pragma operands are allowed.

You cannot use this directive to change the semantics of the HSAIL virtual machine.

Chapter 13. Directives 13.3 pragma Directive

Chapter 13. Directives 13.4 ControlDirectives for Low-Level Performance Tuning

Example
global_u32 &i[2];
global_u64 &i_p; // int *i_p = &i[1];
pragma "rti", "init", "symbolic", &i_p, &i, 4;

kernel &pragma_example(kernarg_u64 %float_buf)
{
pragma "rti", "kernel", "arg", %float_buf, "*float";
// ...

};

13.4 Control Directives for Low-Level Performance Tuning
HSAIL provides control directives to allow implementations to pass information to the finalizer. These
directives are used for low-level performance tuning. See Table 13–1 (below).

Table 13–1 Control Directives for Low-Level Performance Tuning

Directive Arguments
enablebreakexceptions exceptionsNumber

enabledetectexceptions exceptionsNumber

maxdynamicgroupsize size

maxflatgridsize count

maxflatworkgroupsize count

requireddim nd

requiredgridsize nx, ny, nz
requiredworkgroupsize nx, ny, nz
requirenopartialworkgroups

Explanation of Arguments

exceptionsNumber: Source that specifies the set of exceptions. bit:0=INVALID_OPERATION, bit: 1=DIVIDE_BY_ZERO,
bit:2=OVERFLOW, bit:3=UNDERFLOW, bit:4=INEXACT; all other bits are ignored. Must be a constant value of data
type u32. WAVESIZE is not allowed. The bits corresponding to exceptions not supported by the kernel agent’s profile
must be 0 (see 16.2. Profile-Specific Requirements (page 289)).

size: The number of bytes. Must be a constant value of data type u32. WAVESIZE is not allowed.

count: The number of work-items. Must be an immediate value, greater than 0, of data type u32 for
maxflatworkgroupsize and u64 for maxflatgridsize. WAVESIZE is allowed.

nd: The number of dimensions. Must be a constant value, with the value 1, 2, or 3, of data type u32. WAVESIZE is not
allowed.

nx, ny, nz: The size for the X, Y and Z dimensions of the grid or work-group respectively. Must be an immediate
value, greater than 0, of data type u32 for requiredworkgroupsize and u64 for requiredgridsize. WAVESIZE is
allowed.

See also 18.3.8. BrigControlDirective (page 303).

The control directives must appear in the code block of a kernel or function and only apply to that kernel or
function. This allows an HAIL finalizer and linker to process kernels and functions independently, since
control directives in one kernel or function can not alter another.

Control directives must appear before the first HSAIL code block definition or statement (see 4.3.5. Code
Block (page 61)). This allows a finalizer to locate all control directives for a kernel or function without having
to read the entire code block.

278 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 279

The rules for what happens if the same control directive appears multiple times, or in functions called by the
code block, are specified by each control directive.

If the runtime library also supports arguments for the limits specified by the directives, the directives take
precedence over any constraints passed to the finalizer by the runtime.

enablebreakexceptions

Specifies the set of exceptions that must be enabled for the BREAK policy. See 12.3. Hardware
Exception Policies (page 271). exceptionsNumber must be a constant value of data type u32
(WAVESIZE is not allowed). The bits correspond to the exceptions as follows: bit 0 is INVALID_
OPERATION, bit 1 is DIVIDE_BY_ZERO, bit 2 is OVERFLOW, bit 3 is UNDERFLOW, bit 4 is INEXACT, and
other bits are ignored. It can be placed in either a kernel or a function code block.

The set of exceptions enabled for the BREAK policy is the union of the sets specified by all the
enablebreakexceptions control directives in the kernel or indirect function code block and the set
of enable break exceptions specified when the finalizer is invoked. The setting applies to the kernel or
indirect function being finalized and all functions it calls through non-indirect calls in the same module.

If the functions called directly or indirectly by the kernel contain enablebreakexceptions control
directives, then the results are undefined if exceptions specified in them are enabled if they are not also
enabled by the kernel or finalizer option.

It is undefined if enabled BREAK exceptions that are generated in functions called directly or indirectly
by the kernel that are defined in other modules, or indirect functions called by an indirect call
regardless of what module in which they are defined, are signaled, unless they contain
enablebreakexceptions control directives or the finalizer was invoked specifying them in the
enable break exceptions argument when they were finalized.

Whether the BREAK exception policy for the five exceptions is supported depends on the kernel agent
and the profile specified (see 16.2. Profile-Specific Requirements (page 289)). The finalizer is required
to report an error if an exception that is not supported for the BREAK policy is enabled either through an
enablebreakexceptions control directive for the kernel or any of the functions it calls directly or
indirectly that are being finalized, or the enable break exceptions argument specified when the finalizer
is invoked. See 4.19.5. Floating Point Exceptions (page 112).

enabledetectexceptions

Specifies the set of exceptions that must be enabled for the DETECT policy. See 12.3. Hardware
Exception Policies (page 271). exceptionsNumber must be a constant value of data type u32
(WAVESIZE is not allowed). The bits correspond to the exceptions as follows: bit 0 is INVALID_
OPERATION, bit 1 is DIVIDE_BY_ZERO, bit 2 is OVERFLOW, bit 3 is UNDERFLOW, bit 4 is INEXACT, and
other bits are ignored. It can be placed in either a kernel or a function code block.

The set of exceptions enabled for the DETECT policy is the union of the sets of exceptions specified by
all the enabledetectexceptions control directives in the kernel or indirect function code block
and the set of enable detect exceptions specified when the finalizer is invoked. The setting applies to
the kernel or indirect function being finalized and all functions it calls through non-indirect calls in the
same module.

If the functions called directly or indirectly by the kernel contain enabledetectexceptions control
directives, then the results are undefined if exceptions specified in them are enabled if they are not also
enabled by the kernel or finalizer option.

Chapter 13. Directives 13.4 ControlDirectives for Low-Level Performance Tuning

Chapter 13. Directives 13.4 ControlDirectives for Low-Level Performance Tuning

It is undefined if enabled DETECT exceptions that are generated in functions called directly or indirectly
by the kernel that are defined in other modules, or indirect functions called by an indirect call
regardless of what module in which they are defined, update the conceptual exception_detected field
(see 11.2.3. Additional Information (page 261)), unless they contain enabledetectexceptions
control directives or the finalizer was invoked specifying them in the enable detect exceptions argument
when they were finalized.

Whether the DETECT exception policy for the five exceptions is supported depends on the kernel agent
and the profile specified (see 16.2. Profile-Specific Requirements (page 289)). The finalizer is required
to report an error if an exception that is not supported for the DETECT policy is enabled either through
an enabledetectexceptions control directive for the kernel or any of the functions it calls directly
or indirectly that are being finalized, or the enable break exceptions argument specified when the
finalizer is invoked. See 4.19.5. Floating Point Exceptions (page 112).

maxdynamicgroupsize

Specifies the maximum number of bytes of dynamic group memory (see 4.20. Dynamic Group Memory
Allocation (page 112)) that will be allocated for a dispatch of the kernel. size must be a constant value
of data type u32, with a value greater than or equal to 0 (WAVESIZE is not allowed). It can be placed in
either a kernel or a function code block. This is only a hint and can be ignored by the finalizer.

This value can be used by the finalizer to determine the maximum number of bytes of group memory
used by each work-group. The finalizer can add this value to the group memory required for all group
segment variables used by the kernel and all functions it calls and to the group memory used to
implement other HSAIL features such as fbarriers and the detect exception instructions. This can allow
the finalizer to determine the expected number of work-groups that can be executed by a compute unit
and allow more resources to be allocated to the work-items if it is known that fewer work-groups can be
executed due to group memory limitations. This can also allow the finalizer to determine that there is
free group memory that it can use for other purposes such as spilling.

The control directive applies to the whole kernel and all functions it calls. If multiple control directives
are present in the kernel or the functions it calls, they must all have the same value.

If the value for maximum dynamic group size is specified when the finalizer is invoked, it must match
the value given in any maxdynamicgroupsize control directive.

maxflatgridsize

Specifies the maximum number of work-items that will be in the grid when the kernel is dispatched.
count must be an immediate value of data type u64, with a value greater than 0 (WAVESIZE is
allowed). It can be placed in either a kernel or a function code block. This is only a hint and can be
ignored by the finalizer. It is undefined if the kernel is dispatched with a grid size that has a product of
the X, Y, and Z components greater than this value.

A finalizer might be able to generate better code for the workitemabsid, workitemflatid, and
workitemflatabsid instructions if the absolute grid size is less than 224−1, because faster mul24
instructions can be used. The control directive applies to the whole kernel and all functions it calls. If
multiple control directives are present in the kernel or the functions it calls, they must all have the same
values.

280 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 281

If the value for maximum absolute grid size is specified when the finalizer is invoked, the value must be
less than or equal to the corresponding value given in any maxflatgridsize control directive, and
will override the control directive value.

The value specified for maximum absolute grid size must be greater than or equal to the product of the
values specified by requiredgridsize.

maxflatworkgroupsize

Specifies the maximum number of work-items that will be in the work-group when the kernel is
dispatched. count must be an immediate value of data type u32, with a value greater than 0
(WAVESIZE is allowed). It can be placed in either a kernel or a function code block. This is only a hint
and can be ignored by the finalizer. It is undefined if the kernel is dispatched with a work-group size that
has a product of the X, Y, and Z components greater than this value.

A finalizer might be able to generate better code for barriers if it knows that the work-group size is less
than or equal to the wavefront size. A finalizer might be able to generate better code for the
workitemflatid instruction if the total work-group size is less than 224−1, because faster mul24
instructions can be used. The control directive applies to the whole kernel and all functions it calls. If
multiple control directives are present in the kernel or the functions it calls, they must all have the same
values.

If the value for maximum absolute work-group size is specified when the finalizer is invoked, the value
must be less than or equal to the corresponding value given by any maxflatgroupsize control
directive, and will override the control directive value.

The value specified for maximum absolute work-group size must be greater than or equal to the
product of the values specified by requiredworkgroupsize.

requireddim

Specifies the number of dimensions that will be used when the kernel is dispatched. nd must be a
constant value of data type u32 with the value 1, 2, or 3 (WAVESIZE is not allowed). It can be placed in
either a kernel or a function code block. This is only a hint and can be ignored by the finalizer.

The results are undefined if the kernel is dispatched with a dimensions value that does not match nd.

With the use of this instruction, a finalizer might be able to generate better code for the workitemid,
workitemabsid, workitemflatid, and workitemflatabsid instructions, because the terms
for dimensions above the value specified can be treated as 1.

The control directive applies to the whole kernel and all functions it calls. If multiple control directives
are present in the kernel or the functions it calls, they must all have the same value.

If requireddim is specified (either by a control directive or when the finalizer was invoked), it must be
consistent with requiredgridsize and requiredworkgroupsize if specified: if the value is 1,
then their Y and Z dimensions must be 1; if 2, then their Z dimension must be 1; and all other
dimensions must be non-0.

If the value for required dimensions is specified when the finalizer is invoked, the value must match the
value in any requireddim control directive.

Chapter 13. Directives 13.4 ControlDirectives for Low-Level Performance Tuning

Chapter 13. Directives 13.4 ControlDirectives for Low-Level Performance Tuning

requiredgridsize

Specifies the grid size that will be used when the kernel is dispatched. The X, Y, Z components of the
grid size correspond to nx, ny, nz respectively. They must be an immediate value of data type u64,
with a value greater than 0 (WAVESIZE is allowed). It can be placed in either a kernel or a function code
block. This is only a hint and can be ignored by the finalizer.

The results are undefined if the kernel is dispatched with a grid size that does not match these values. A
finalizer might be able to generate better code for the gridsize instruction. Also, if the total grid size
is less than 224−1, then faster mul24 instructions might be able to be used for the workitemid,
workitemabsid, workitemflatid, and workitemflatabsid instructions, because the terms
for dimensions above the value specified can be treated as 1. In conjunction with
requiredworkgroupsize, a finalizer might also be able to generate better code for gridgroups
and currentworkgroupsize instructions (because it can determine if there are any partial work-
groups).

The control directive applies to the whole kernel and all functions it calls. If multiple control directives
are present in the kernel or the functions it calls, they must all have the same values.

If requiredgridsize is specified (either by a control directive or when the finalizer was invoked), it
must be consistent with requiredworkgroupsize and requireddim if specified: invalid
dimensions must be 1, and valid dimension must not be 0.

If the values for required grid size are specified when the finalizer is invoked, they must match the
corresponding values given in any requiredgridsize control directive. The product of the values
must also be less than or equal to the value specified by maxflatgridsize.

requiredworkgroupsize

Specifies the work-group size that will be used when the kernel is dispatched. The X, Y, Z components of
the work-group size correspond to nx, ny, nz respectively. They must be an immediate value of data
type u32, with a value greater than 0 (WAVESIZE is allowed). It can be placed in either a kernel or a
function code block. This is only a hint and can be ignored by the finalizer.

The results are undefined if the kernel is dispatched with a work-group size that does not match these
values.

A finalizer might be able to generate better code for barriers if it knows that the work-group size is less
than or equal to the wavefront size. This directive might also allow better code for the
workgroupsize, workitemid, workitemabsid, workitemflatid, and
workitemflatabsid instructions.

The control directive applies to the whole kernel and all functions it calls. If multiple control directives
are present in the kernel or the functions it calls, they must all have the same values.

If requiredworkgroupsize is specified (either by a control directive or when the finalizer was
invoked), it must be consistent with requiredgridsize and requireddim if specified: invalid
dimensions must be 1, and valid dimension must not be 0.

If the values for required work-group size are specified when the finalizer is invoked, they must match
the corresponding values given in any requiredworkgroupsize control directive. The product of
the values must also be less than or equal to the value specified by maxflatworkgroupsize.

282 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 283

requirenopartialworkgroups

Specifies that the kernel must be dispatched with no partial work-groups. It can be placed in either a
kernel or a function code block. This is only a hint and can be ignored by the finalizer.

The results are undefined if the kernel is dispatched with any dimension of the grid size not being an
exact multiple of the corresponding dimension of the work-group size.

A finalizer might be able to generate better code for currentworkgroupsize if it knows there are
no partial work-groups, because the result becomes the same as the workgroupsize instruction. A
kernel agent might be able to dispatch a kernel more efficiently if it knows there are no partial work-
groups.

The control directive applies to the whole kernel and all functions it calls. It can appear multiple times in
a kernel or function. If it appears in a function (including external functions), then it must also appear in
all kernels that call that function (or have been specified when the finalizer was invoked), either directly
or indirectly.

If require no partial work-groups is specified when the finalizer is invoked, the kernel behaves as if the
requirenopartialworkgroups control directive has been specified.

Chapter 13. Directives 13.4 ControlDirectives for Low-Level Performance Tuning

Chapter 14. module Header 14.1 Syntax of the module Header

CHAPTER 14.
module Header

This chapter describes the module header.

14.1 Syntax of the module Header
The module header specifies the module name, HSAIL version, the profile, target architecture, and default
floating-point rounding mode required by the code in a module.

A single module header must appear at the top of each module, optionally preceded by only annotations
(see 4.3.1. Annotations (page 55)).

The syntax is:

module name : major : minor : profile : machine_model : default_float_rounding

name

The name of the module. The name must be a module scope identifier. See 4.6. Identifiers (page 77).

major
An integer constant of type u64 and must be in the right-open interval [0, 232). WAVESIZE is not allowed.

Specifies that major version changes are incompatible and that this stream of instructions can only be
compiled and executed by systems with the same major number.

Major number changes are incompatible, so a kernel or function compiled with one major number cannot
call a function compiled with a different major number.

minor

An integer constant of type u64 and must be in the right-open interval [0, 232). WAVESIZE is not
allowed.

Specifies that this stream of instructions can only be compiled and executed by systems with the same
or larger minor number.

Minor number changes correspond to added functionality. Minor changes are compatible, so kernels or
functions compiled at one minor level can call functions compiled at a different minor level, provided
the implementation supports both minor versions.

profile
Specifies which profile is used during finalization. Possibilities are:

l $base — The Base profile should be used. Inclusion of this option indicates that the associated
HSAIL uses or requires features of the Base profile.

l $full — The Full profile should be used. Inclusion of this option indicates that the associated
HSAIL uses or requires features of the Full profile.

For more information, see Chapter 16. Profiles (page 288).

284 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 285

machine_model

Specifies which machine model is used during finalization. Possibilities are:

l $large — Specifies large model, in which all flat and global addresses are 64 bits.

l $small — Specifies small model, in which all flat and global addresses are 32 bits. A legacy
host CPU application executing in 32-bit mode might want program data-parallel sections in
small mode.

For more information, see 2.9. Small and Large Machine Models (page 39).

default_float_rounding

Specifies which default floating-point rounding mode is used during finalization. Possibilities are:

l $default — Specifies that the finalizer must use the default floating-point rounding mode of
the program that the module is added. If the program also has a default floating-point rounding
mode of default, then the finalizer uses the default floating-point rounding mode of the kernel
agent for which it is generating code, which can be either zero or near. The finalizer for a
kernel agent must use the same default value for all finalizations regardless of the profile
specified. An HSA runtime query can be used to determine the default floating-point rounding
mode for a kernel agent.

l $zero — Specifies that zero floating-point rounding must be used. An error must be reported
by the finalizer if the module header specifies the $base profile and the kernel agent does not
support zero floating-point rounding mode for the Base profile.

l $near — Specifies that near floating-point rounding must be used. An error must be reported
by the finalizer if the module header specifies the $base profile and the kernel agent does not
support near floating-point rounding mode for the Base profile.

For more information, see 4.19.2. Floating-Point Rounding (page 109) and 16.2.1. Base Profile
Requirements (page 289).

It is an error to add an HSAIL module to an HAIL program unless the rules defined in 4.2.1. Finalization (page
49) are met.

See 4.2. Program, Code Object, and Executable (page 48).

Examples
module &m1:1:0:$full:$small:$default;
module &m2:1:0:$full:$large:$zero;
module &m3:1:0:$base:$small:$near;
module &m41:0:$base:$large:$default;

Chapter 14. module Header 14.1 Syntax of the module Header

Chapter 15. Libraries 15.1 Library Restrictions

CHAPTER 15.
Libraries

This chapter describes how to write HSAIL code for libraries.

15.1 Library Restrictions
HSAIL provides support for separately supplied HSAIL libraries.

Code written for an HSAIL library has the following restrictions:

l Every externally callable routine in the library should have program linkage.

l Every non-externally-callable routine in the library should have module linkage.

l Every HSAIL module that contains a call to a library should have a declaration specifying program
linkage for each library function that it will call.

For HSAIL modules that use a library, the library module should be added to the HSAIL program before
finalizing.

See 4.2. Program, Code Object, and Executable (page 48) and 4.12. Linkage (page 97).

15.2 Library Example
An example of library code is shown below:

module &lib1:0:$full:$small:$default;
group_f32 &xarray[100]; // the library gets part of this array
decl prog function &libfoo(arg_u32 %res)(arg_u32 %sptr);
decl function &a()(arg_u32 %formal);

kernel &main()
{
{
arg_u32 %in;
arg_u32 %out;
// give the library part of the group memory
lda_group_u32 $s1, [&xarray][4];
st_arg_u32 $s1, [%in];
call &libfoo(%out)(%in);
ld_arg_u32 $s2, [%out];

}
{
arg_u32 %in1;
st_arg_u32 $s2, [%in1];
call &a()(%in1);
// $s2 has the library call result

}
// ...

};

function &a()(arg_u32 %formal)
{
// get the result of the library call
ld_arg_u32 $s1, [%formal];
// ...

286 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 287

};

// now for the second compile unit - the library

decl function &l1()(arg_u32 %input);
prog function &libfoo(arg_u32 %res)(arg_u32 %sptr)
{
ld_arg_u32 $s1, [%sptr];
ld_group_u32 $s2, [$s1]; // library reads some group data
st_group_u32 $s2, [$s1+4]; // library reads some group data
{
arg_u32 %s;
// give a function in the library part of the shared array
add_u32 $s4, $s2, 20;
st_arg_u32 $s2, [%s];
call &l1()(%s);
}
// ...

};

function &l1()(arg_u32 %input)
{
ld_arg_u32 $s6, [%input];
// library passed address in group memory is now $s6
// ...

};

Chapter 15. Libraries 15.2 Library Example

Chapter 16. Profiles 16.1 What Are Profiles?

CHAPTER 16.
Profiles

This chapter describes the HSAIL profiles.

16.1 What Are Profiles?
HSAIL provides two kinds of profiles:

l Base

l Full

HSAIL profiles are provided to guarantee that the implementation supports a required feature set and
meets a given set of program limits. The strictly defined set of HSAIL profile requirements provides
portability assurance to users that a certain level of support is present.

The Base profile indicates that an implementation targets smaller systems that provide better power
efficiency without sacrificing performance. Precision is possibly reduced in this profile to improve power
efficiency.

The Full profile indicates that an implementation targets larger systems that have hardware that can
guarantee higher-precision results without sacrificing performance.

The following rules apply to profiles:

l A finalizer can choose to support either or both profiles.

l A single profile applies to the entire module.

l All modules of an HSAIL program must specify the same profile. However, an application may have
multiple HSAIL programs that specify different profiles. See 4.2. Program, Code Object, and
Executable (page 48).

l The required profile must be selected by a modifier on the module header. See 14.1. Syntax of the
module Header (page 284).

l Both the large and small machine models are supported in each profile.

l The profile applies to all declared options.

Both profiles are required to support the following:

l The integer and bit types and all instructions on the types.

l The 16-bit floating-point type (f16), 32-bit floating-point type (f32) and all instructions on the types
according to the declared profile. See 4.19.1. Floating-Point Numbers (page 109).

288 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 289

l For all floating-point arithmetic instructions (see 5.11. Floating-Point Arithmetic Instructions (page
140)); cmp with floating-point sources (see 5.18. Compare (cmp) Instruction (page 155)); and cvt
with a floating-point source type (see 5.19. Conversion (cvt) Instruction (page 159)):

o Must generate invalid operation exceptions for signaling NaN sources. Additionally, the
signaling comparison forms of the cmp instruction must also generate invalid operation
exceptions for quiet NaN sources.

o Must not return a signaling NaN.

Note, this does not apply to floating-point bit instructions (see 5.13. Floating-Point Bit Instructions
(page 146)) or native floating-point instructions (see 5.14. Native Floating-Point Instructions (page
148)).

l The packed types and all instructions on the types with the exception of f64x2.

l Handling of debugtrap exceptions.

Both profiles are required to support all HSAIL requirements, except as specified in 16.2. Profile-Specific
Requirements (below).

See Appendix A. Limits (page 374) for details on limits that apply to both profiles.

The HSA runtime provides queries that enables an application to determine which optional features are
available, the properties of implementation dependent features, and the values of implementation defined
limits.

16.2 Profile-Specific Requirements
This section describes the requirements that an implementation must adhere to in order to claim support of
the Base profile or Full profile.

16.2.1 Base Profile Requirements

Implementations of the Base profile are required to provide the following support:

l On all supported floating-point types:

o Must provide an IEEE/ANSI Standard 754-2008 correctly rounded result using the default
rounding mode for add, sub, mul, fma, and fractg instructions.

o Does not support the 64-bit floating-point type (f64), 64-bit packed floating-point type
(2xf64), double-precision floating point constants, nor any instructions on the types.

o Must provide div instructions within 2.5 ULP (see 4.19.6. Unit of Least Precision (ULP) (page
112)) of the mathematically accurate result.

o Must provide sqrt instructions less than or equal to 1 ULP of the mathematically accurate
result.

o All floating-point instructions (except cvt) that support the floating-point rounding mode
must only allow the default floating-point rounding mode (see 4.19.2. Floating-Point Rounding
(page 109)).

Chapter 16. Profiles 16.2 Profile-Specific Requirements

Chapter 16. Profiles 16.2 Profile-Specific Requirements

o The cvt instruction from a floating-point type to a smaller floating-point type, and from
integer type to floating-point type, must only allow the default floating-point rounding mode.
The cvt instruction from floating-point type to integer type must only support the integer
rounding modes (see 5.19.4. Description of Integer Rounding Modes (page 162)) of zeroi,
zeroi_sat, szeroi, and szeroi_sat (which correspond to the standard floating-point
to integer conversion of C language).

o Must flush subnormal values to zero. All HSAIL floating-point instructions must specify the
ftz modifier (when ftz is valid).

o For all floating-point arithmetic instructions (see 5.11. Floating-Point Arithmetic Instructions
(page 140)) and cvt with a floating-point source and destination type (see 5.19. Conversion
(cvt) Instruction (page 159)), if one or more inputs are NaNs, the result must be a quiet NaN.
The actual quiet NaN is implementation defined and is not required to be propagated from a
source operand to the destination operand (see 4.19.4. Not A Number (NaN) (page 111)).

o The exception to this rule is min and max, when one of the inputs is a quiet NaN and
the other is a number, in which case the result is the number.

l The finalizer must give an error if the rounding modifier is not omitted for an instruction that only
allows the default floating-point rounding mode. The default floating-point rounding mode that will be
used is specified by the module header (14.1. Syntax of the module Header (page 284)). The default
floating-point rounding modes supported must be either zero, near, or both zero and near. An
HSA runtime query is available to determine the floating-point rounding modes supported by a
kernel agent if the Base profile is specified.

l The icall instruction is not supported. See 10.8. Indirect Call (icall) Instruction (page 252).

l It is optional if the DETECT or BREAK exception policies (see 12.3. Hardware Exception Policies (page
271)) for the five exceptions specified in 12.2. Hardware Exceptions (page 269) are supported. An
HSA runtime query can be used to determine the exceptions supported by the Base profile for the
DETECT and BREAK policies for a kernel agent. See 4.19.5. Floating Point Exceptions (page 112).

l An implementation is only required to support system scope on virtual address ranges allocated
using the HSA runtime memory allocator for memory topology regions that support fine grain
coherency (see 6.2.2. Memory Scope (page 170)). In particular, it is not required that memory
allocated by a system memory allocator support system scope.

16.2.2 Full Profile Requirements

Implementations of the Full profile are required to provide the following support:

l On all supported floating-point types:

o Must provide an IEEE/ANSI Standard 754-2008 correctly rounded result for add, sub, mul,
fract, div, fma, and sqrt instructions.

o Must support the 64-bit floating-point type (f64), 64-bit packed floating-point type (2xf64),
double-precision floating point constants and all instructions on the types.

o Must support all floating-point rounding modes (see 4.19.2. Floating-Point Rounding (page
109)) and all integer rounding modes (5.19.4. Description of Integer Rounding Modes (page
162)).

290 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 291

o Must support floating-point subnormal values.

o Must support the ftz modifier and IEEE/ANSI Standard 754-2008 gradual underflow.

o For all floating-point arithmetic instructions (see 5.11. Floating-Point Arithmetic Instructions
(page 140)) and cvt with a floating-point source and destination type (see 5.19. Conversion
(cvt) Instruction (page 159)), if one or more inputs are NaNs, the result must be a quiet NaN.
The quiet NaN produced must be propagated from a source operand to the destination
operand as defined in 4.19.4. Not A Number (NaN) (page 111).

o The exception to this rule is min and max, when one of the inputs is a quiet NaN and
the other is a number, in which case the result is the number.

The default floating-point rounding mode specified by the module header (see 14.1. Syntax of the
module Header (page 284)) must support both zero and near.

l Must support the DETECT exception policy and can optionally support the BREAK exception policy
(see 12.3. Hardware Exception Policies (page 271)) for the five exceptions specified in 12.2.
Hardware Exceptions (page 269). An HSA runtime query can be used to determine the exceptions
supported by the Full profile for the DETECT and BREAK policies for a kernel agent. See 4.19.5.
Floating Point Exceptions (page 112).

Chapter 16. Profiles 16.2 Profile-Specific Requirements

Chapter 17. Guidelines for CompilerWriters 17.1 Register Pressure

CHAPTER 17.
Guidelines for Compiler Writers

This chapter provides guidelines for compiler writers.

17.1 Register Pressure
The most important optimization for a high-level compiler is to minimize register pressure.

Code should be scheduled to use as few registers as possible. On the other hand, it is often important to try
to move memory instructions together either by using the vector forms (v2, v3, and v4) or by making loads
and stores consecutive. Each high-level compiler will have to approach this carefully.

High-level compilers should use the spill segment to hold register spills, because the finalizer might be able
to deploy extra hardware registers and remove the spills.

17.2 Using Lower-Precision Faster Instructions
When a source language permits, for example by means of a fast math compiler option, a high-level
compiler can use faster but lower-precision substitutions for slower instructions. For example, div(src0,
src1) could be replaced by src0 * nrcp(src1) whenever the lower precision is permitted.

17.3 Functions
Function calls are often quite expensive. High-level compilers may want to inline functions. However,
consideration should be given to code size which can impact instruction cache performance.

Common performance ratios might be: one “call” takes as long as 1000 “adds,” one indirect call takes as
long as 10,000 “adds.”

Recursion can require significant private segment space to accommodate the stack frames of the total call
depth of the recursive functions. Each stack frame can potentially require space for:

l function scope private and spill segment definitions

l formal argument arg segment definitions

l any space needed for saved HSAIL or ISA registers due to calls

l any other finalizer introduced temporaries including spilled ISA registers

Given that a typical HSAIL implementation is able to execute thousands of work-items simultaneously,
programs with recursive functions can frequently run out of private segment space.

To avoid recursive functions, an application could use an array for a stack with a size known to be large
enough for the maximum depth of recursion. A simple high-level compiler could also perform tail recursion
optimizations. These techniques can enable additional inlining.

292 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 293

17.4 Frequent Rounding Mode Changes
Some implementations might choose to change the rounding mode of floating-point instructions by
changing the value of some state register. This might require flushing the floating-point pipeline, which can
be quite slow. On such implementations, frequent changes of IEEE/ANSI Standard 754-2008 rounding
modes can be very slow. Compilers are advised to group floating-point instructions so that instructions with
the same mode are adjacent when possible.

17.5 Wavefront Size
Some applications might be able to maximize performance with knowledge of the wavefront size. Tool
developers need to be careful about wavefront size assumptions, because programs coded for a single
wavefront size might generate wrong answers if they are executed on machines with a different wavefront
size.

Considering that wavefronts are important to get maximal performance but are not necessary to ensure
correct results, you should, as a general rule, try to avoid control flow divergence. Work-items in a wavefront
are numbered consecutively, so this could be achieved by trying to code kernels so that consecutive work-
items take the same path.

This is similar to the need to write cache-aware code for best performance on a CPU.

17.6 Control Flow Optimization
The requirements of divergent control flow (see 2.12. Divergent Control Flow (page 41)) makes certain
control flow optimizations illegal. For example, certain basic block cloning optimization can affect the set of
active work-items in a wavefront and so alter when control flow reconverges. If allowed, this could result in
instructions that are involved in cross-lane interaction, such as barrier and cross-lane instructions (see
Chapter 9. Parallel Synchronization and Communication Instructions (page 229)), to behave differently.

Consider the following pseudo HSAIL example:

if (x || y) {
A;
cross-lane-operation;
B;
if (x) {
C;

}
}

Reconverging control flow involving communication instructions later than the immediate post-dominator,
as in the following pseudo machine code control flow, is not legal. It would result in the cross-lane
instructions executing differently as the set of active lanes has been changed:

if (x) {
A;
cross-lane-operation;
B;
C;

} else if (y) {
A;
cross-lane-operation;
B;

}

Also consider the following two pseudo HSAIL examples:

Chapter 17. Guidelines for CompilerWriters 17.4 Frequent RoundingMode Changes

Chapter 17. Guidelines for CompilerWriters 17.7 Memory Access

if (x) { if (x) {
A; cross-lane-operation;
cross-lane-operation; A;

} else { } else {
B; cross-lane-operation;
cross-lane-operation; B;

} }

If control flow involving cross-lane instructions is reconverged earlier than the immediate post-dominator,
or diverged later than the immediate dominator, as in the following pseudo machine code control flows, it is
also not legal for the same reason.

if (x) { cross-lane-operation;
A; if (x) {

} else { A;
B; } else {

} B;
cross-lane-operation; }

In general it is not legal to clone instructions that can result in communication between lanes within a
wavefront, or to hoist cross-lane instructions out of control flow, as that can change the execution behavior.

17.7 Memory Access
The finalizer is free to remove and merge loads and stores to memory if this does not change the answer of
the single work-item, including any communication with other work-items and agents.

The private, spill and arg segments can only be accessed by a single work-item so can be optimized by only
considering the single work-item accesses.

The readonly and kernarg segments, read-only image data, global segment variables declared as const,
and addresses loaded by ld instructions with the const modifier, cannot be changed during the execution
of a work-item, so the accesses of other work-items and agents do not have to be considered.

Ordinary memory instructions to the group and global segment, and non-atomic image instructions to read-
write images, cannot affect, or be affected by, other work-items or agents, except by an intervening
synchronizing memory instruction or memory fence, as that would constitute a data race and so be
undefined.

However, ordinary stores cannot be introduced that would not have been executed in the original program if
they can introduce a data race. Consider the following pseudo HSAIL program where all memory
instructions are ordinary:

Initial: x = y = 0;

Thread 1: Thread 2:
if (x == 1) { if (y == 1) {

y = 1; x = 1;
} }

Result: x == y == 0

The HSA memory model defines that this program does not have a data race as all reads that can influence
the address, data or whether a write instruction is performed at all must appear to complete before the
write instruction is initiated. Therefore, despite all memory instructions being ordinary, a compiler cannot
introduce an ordinary store, even if the single work-item result would appear to be the same based on only
considering the single work-item. Therefore, it would not be legal to transform it into the following pseudo
machine code as that introduces a data race into a program that did not previously have a data-race and
would likely cause results other than the only legal outcome:

294 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 295

Initial: x = y = 0;

Thread 1: Thread 2:
y = 1; x = 1;
if (x != 1) { if (y != 1) {

y = 0; x = 0;
} }

Results: undefined as now has a data race

Atomic memory instructions, or ordinary memory instructions that are made visible to other work-items or
agents through synchronizing memory instructions, memory fences, or packet processor fences, cannot in
general be removed even if their results are not used in the single work-item, as they may be used by other
work-items and agents. However, it may still be possible to eliminate and merge multiple such adjacent
instructions if it can only produce legal execution orders of the original program. For example, multiple
adjacent relaxed atomic stores to the same location could be collapsed into one since the memory model
does not require that other work-items or agents see every value of a relaxed atomic, just values that
advance in the modification order of the location within finite time.

17.8 Unaligned Access
While HSAIL supports unaligned accesses for loads and stores, these are quite expensive and should be
avoided. Unaligned accesses are not atomic, and atomic and atomic no return operations do not support
unaligned access.

If a load or store is known to be naturally aligned, or have some other known alignment, it should be marked
with the align modifier. This might allow the finalizer to generate more efficient code on some
implementations. A front-end compiler may be able to determine this either due to restrictions in the
language it is compiling, or by analysis based on variable allocation. However, incorrectly marked aligned
memory accesses might result in undefined results and generate memory exceptions on some
implementations.

17.9 Constant Access
If a load is known to access memory locations that will not be changed during the lifetime of the variable, it
should be marked with the const modifier. On some implementations, knowing a load is accessing
constant memory might be more efficient. The results are undefined if a memory load marked as constant
is changed during the execution of any kernels that are part of the program: on some implementations this
might result in incorrect values being loaded. See 6.3. Load (ld) Instruction (page 173).

For similar reasons, if a variable is known to never have its value changed after it has been created and
initialized, then it should be marked with the const qualifier. See 4.3.10. Declaration and Definition
Qualifiers (page 69).

An HSAIL global or readonly segment variable definition marked with the const qualifier are required to
have an initializer. The finalizer can replace usage of the variable by the value of these variable initializers.
However, if the variable is only declared in HSAIL, and defined by using the HSA runtime, then the finalizer
must not do this replacement as the value may change on each execution of the application.

Chapter 17. Guidelines for CompilerWriters 17.8 Unaligned Access

Chapter 17. Guidelines for CompilerWriters 17.10 Segment Address Conversion

17.10 Segment Address Conversion
When converting between segment and flat addresses, if it is known that the address will not be the null
pointer value, then the instructions should be marked with the nonull modifier. On some implementations,
knowing an address will not be the null pointer value might be more efficient. The results are undefined if a
segment address conversion instruction marked as nonull is given a null pointer value: on some
implementations this might result in incorrect values.

17.11 When to Use Flat Addressing
In general, segment addressing is faster than flat-address addressing. For example:

l In the large machine model a flat-address is 64 bits, but a private or group segment address is
always only 32 bits. This can result in higher register pressure as the address computations have to
be done in 64-bit registers instead of 32-bit registers. In turn this can result in lower performance
due to more spilling, or fewer wavefronts executing on a compute unit due to increased register
usage.

l On some implementations, accessing memory with a flat address may result in issuing a request to
multiple memory units since it could actually access any of them. In such implementations, each
memory unit determines if the flat address references the segment they service and only returns a
result if it does. This can reduce performance as the memory units cannot operate concurrently to
service multiple segment address requests to different segments.

However, the group and private segments are limited to 4 GiB in size.

A high-level compiler should attempt to identify where a segment address can be used to avoid these
performance issues.

In particular, this applies to accessing the global segment, even though the flat address of a global segment
location is the same value as a global segment address to the same location, and that the null pointer value
for a flat address and a global segment address are the same (see 2.8.3. Addressing for Segments (page
35)). If a high-level compiler can determine that an address is either the null pointer value or an address in
the global segment, if should use a global segment instruction rather than a flat instruction when accessing
memory with the address, even though both produce the same result.

17.12 Arg Arguments
While the calling convention allows arg arguments, every finalizer has the option to pass some of the
arguments in high-speed machine registers. High-level compiler developers should read the
microarchitecture guide for the chip for details.

17.13 Exceptions
If any exceptions are enabled for the BREAK policy (see 12.3. Hardware Exception Policies (page 271)), there
are some restrictions on the optimizations that are permitted by the finalizer. In general, however, the intent
is that effective optimizations can still be performed according to the optimization level specified to the
finalizer.

296 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 297

For exceptions enabled for the BREAK or DETECT policy, the finalizer should ensure that optimizations do
not result in generating exceptions that would not have happened without the optimization, or in eliminating
exceptions that would have been generated for non-dead code had the optimization not been done.
However, optimization is allowed to change the order and number of enabled exceptions that are
generated.

For example, for exceptions enabled for the BREAK or DETECT policy:

l A set of instructions that produce a result that can generate an exception cannot be transformed into
a set of instructions that produce the same result but do not generate the exception if:

o The result is visible to other kernel dispatches or other agents.

o The result is used in a computation that is visible to other kernel dispatches or other agents.

However, such transformations are allowed if:

o The exception generated is not enabled for the BREAK or DETECT policy. For example, a
divide by the constant 0.0 could be folded to a multiply by +infinity if the divide by zero
exception is not enabled.

o The result is not visible, and is not used in a computation that is visible, to other kernel
dispatches or other agents. This is true even if the side effects of the exception is visible
through the BREAK policy being enabled, or the DETECT policy being enabled and the
getdetectexcept instruction being used.

l It is allowed to eliminate instructions that are dead, even if they could generate enabled exceptions.
Namely, it is not necessary to prevent eliminating code whose only (side) effect is to cause an
exception. Instructions such as debugtrap, whose sole purpose is to generate an exception, must
always be preserved if in reachable code.

l Instruction reordering is allowed to change the order of exceptions, as long as all enabled exceptions
will still happen at least once. This allows transformations such as constant expression elimination,
expression reassociation, and folding to be performed which can change the order that exceptions
are generated, and can result in the same exception being generated fewer times. These
optimizations are important to achieve performance comparable to code being executed without
exceptions enabled.

l Code hoisting out of a loop and partial redundancy elimination, which can cause an exception where
there previously was none, must not be permitted. For example, hoisting a loop invariant expression
out of a loop, where the expression could cause an exception, must be guarded to ensure it is not
executed if the loop count is 0. However, it should still be legal to hoist the expression provided it is
guarded, which will also change both the order and number of times that exceptions can be
generated.

Chapter 17. Guidelines for CompilerWriters 17.13 Exceptions

Chapter 18. BRIG: HSAILBinary Format 18.1 What Is BRIG?

CHAPTER 18.
BRIG: HSAIL Binary Format

This chapter describes BRIG, the HSAIL binary format.

18.1 What Is BRIG?
BRIG is a binary representation of the textual representation of HSAIL. It is an in-memory binary
representation, not a file based container format. However, a file container format may choose to use the
binary representation of the BRIG module as part of its specification.

The BRIG representation describes all aspects of the textual representation of HSAIL except:

l The textual layout. White space between lexical tokens is not preserved. See 4.4. Source Text Format
(page 74).

l Whether a file name was omitted in a loc directive.

l Whether an address expression has an explicit 0 offset.

l The textual format used to define constants and offsets. It just describes the value required by the
instruction or directive. For example: an integer constant may be truncated from the textual value
specified; an integer typed constant may be changed to an integer constant; a float typed constant
may be changed to a float constant; a constant for a bit type may be changed to an integer or packed
constant; or adjacent aggregate constant elements of the same type or array element type may be
collapsed to a single array type element. See 18.6.1. Constant Operands (page 340).

l The use of explicit instruction modifier values that are the default value used when the modifier is
omitted (such as for align, equiv, width, and zeroi integer rounding mode).

l The use of explicit declaration type qualifier values that are the default value used when the modifier
is omitted (such as for align).

l The use of initializers to specify the size of an array. The textual form of HSAIL allows the size of an
array to be omitted from a variable definition if it has an initializer, in which case it defaults to the
byte size of the initializer divided by the variable element type. In BRIG, the variable definition is
represented as if it had been explicitly declared with a size.

l The order of properties for image and sampler initializers.

l BRIG has a BrigDirectiveNone directive which can be used to reserve space in the hsa_code
section. But this has no representation in the HSAIL textual form.

The HSA runtime uses the BRIG binary representation in the API for the finalizer and linking services and not
the textual form. However, there may be HSA runtime services for converting between the textual form and
BRIG binary form.

298 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 299

18.2 BRIG Module
An HSAIL module (see 4.3. Module (page 53)) is represented in BRIG as a single contiguous block of memory
that contains the following elements:

l a BrigModuleHeader

l a BRIG section index

l three or more BRIG sections

These elements can be positioned within the BRIG module in any order, except that the
BrigModuleHeader must start at offset 0 from the start of the BRIG module. Elements must not overlap.

The base of the BrigModuleHeader and each BRIG section is required to be 16-byte aligned, and the
base of the BRIG section index is required to be 8-byte aligned. Padding between elements is only allowed in
order to satisfy these alignment requirements and must be set to 0.

BrigModule_t is a pointer to the contiguous memory for a single BRIG module:

typedef BrigModuleHeader* BrigModule_t;

The BRIG section index is represented as an array of uint64_t offsets from the start of the BRIG module
to the base of each BRIG section contained in the BRIG module. The order of the elements of the array do
not have to match the order of the BRIG sections within the BRIG module.

BRIG defines three standard BRIG sections that are used to represent an HSAIL module:

l hsa_data — Textual character strings and byte data used in the module. Also contains variable
length arrays of offsets into other sections that are used by entries in the hsa_code and hsa_
operand sections. See 18.4. hsa_data Section (page 319).

l hsa_code — All of the directives and instructions of the module. Most entries contain offsets to the
hsa_operand or hsa_data sections. Directives provide information to the finalizer, and
instructions correspond to HSAIL instructions which the finalizer uses to generate executable
machine code. See 18.5. hsa_code Section (page 320).

l hsa_operand — The operands of directives and instructions in the code section. For example,
immediate values, registers, and address expressions. See 18.6. hsa_operand Section (page 339).

The BRIG section index is indexed by BrigSectionIndex (see 18.3.31. BrigSectionIndex (page 313)). The
first three elements must be for the standard sections in the above order.

HSAIL supports an arbitrary number of additional sections that can come in any order after the standard
sections in the section index. However, the layout of these sections, beyond the standard
BrigSectionHeader, is not specified by HSAIL (see 18.3.32. BrigSectionHeader (page 313)). An
implementation may use these additional sections to represent other information about the module. For
example, they may be produced by high level language compilers or other tools, and may contain debug
information, high level language runtime information and profile data.

Every BRIG section starts with a BrigSectionHeader which contains the section size, name and offset
from the beginning of the section to the first entry. It must be 16 -byte aligned which allows sections to
contain naturally aligned data up to 16 bytes in size. (Note, the standard sections actually only depend on
being 4-byte aligned.) See 18.3.32. BrigSectionHeader (page 313).

Chapter 18. BRIG: HSAILBinary Format 18.2 BRIGModule

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

For the standard BRIG sections, hsa_data, hsa_code, and hsa_operand, the BrigSectionHeader
is followed by the entries of the section with no gaps between each entry. Every entry is a multiple of four
bytes, so every entry starts on a 4-byte boundary. The largest type used in these entries is 32 bits, so every
entry is naturally aligned. There must be no bytes after the last entry of a section and the end of the section.

All entries in the hsa_code and hsa_operand sections have a similar format. Entries are variable-size.
Each entry starts with a BrigBase structure (see 18.3.6. BrigBase (page 302)) which consists of a 16-bit
unsigned integer containing the length of the entry in bytes, followed by a 16-bit kind field indicating the
entry kind. This is followed by the entry kind specific data, which is always zero padded to be a multiple of 4.
While knowledge of the kind of an entry would enable the finalizer to calculate the length in most cases, the
length is encoded explicitly. This allows future expansion of BRIG directives, instructions, or operands to add
additional fields at the end of entries. The use of a length field allows old finalizers to process new BRIG
sections (ignoring any new fields).

A reference between entries in the hsa_code and hsa_operand sections is encoded as a byte offset
from the beginning of the section that contains the referenced entry (not from the beginning of the BRIG
module). The offset is represented as a uint32_t that must be a multiple of 4. Therefore, the standard
sections are limited to 4 GiB. (Note, non-standard sections can be any size as the BrigSectionHeader
uses uint64_t for the section size.) See 118.3.1. Section Offsets (below).

A number of entries in the hsa_code and hsa_operand sections (for example,
BrigDirectiveControl and BrigOperandCodeList) refer to a variable length list of other entries.
A list is represented as a single entry in the hsa_data section that is an array of uint32_t offsets into
the hsa_code or hsa_operand sections. The byte count of these entries must always be a multiple of 4.
The number of elements in the array is not stored explicitly, but is obtained by dividing the byte count of the
hsa_data section entry by 4.

All entries in the hsa_data section consist of a 32-bit unsigned integer containing the number of bytes of
data, then the bytes of the data, followed by enough zero padding bytes to make the entry a multiple of 4
bytes.

BRIG structures are accessible in C language style using structs. (C++ language classes are not used.) All
standard BRIG values are stored in little endian format: including the fields in BrigModuleHeader, the
fields in BrigSectionHeader, the section index elements, the fields in all entries in the hsa_code and
hsa_operand sections, and all data values in the hsa_data section. The endian format of the non-
standard sections, beyond the standard BrigSectionHeader header, is implementation defined.

18.3 Support Types
This section defines the various types and enumerations used in the structures present in each BRIG
section.

18.3.1 Section Offsets

The following types are used to reference an entry in a specific section. The value is the byte offset relative
to the start of the section to the beginning of the referenced entry. The value 0 is reserved to indicate that
the offset does not reference any entry.

typedef uint32_t BrigDataOffset32_t;
typedef uint32_t BrigCodeOffset32_t;
typedef uint32_t BrigOperandOffset32_t;

300 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 301

For hsa_data section offsets, the following types are used to indicate the contents of the hsa_data
section entry referenced:

typedef BrigDataOffset32_t BrigDataOffsetString32_t;
typedef BrigDataOffset32_t BrigDataOffsetCodeList32_t;
typedef BrigDataOffset32_t BrigDataOffsetOperandList32_t;

l BrigDataOffsetString32_t — The entry contains a textual string or byte data.

l BrigDataOffsetCodeList32_t — The entry contains an array of BrigCodeOffset32_t
values. The byteCount of the entry must be exactly (4 * number of array elements).

l BrigDataOffsetOperandList32_t — The entry contains an array of
BrigOperandOffset32_t values. The byteCount of the hsa_data section entry must be
exactly (4 * number of array elements).

18.3.2 BrigAlignment

BrigAlignment is used to specify the alignment of a memory address. Because the alignment must be a
power of 2 between 1 and 256 inclusive, only enumerations for the power of 2 values are present, and they
are numbered as log

2
(n) + 1 of the value. The value BRIG_ALIGNMENT_1 means any byte boundary,

BRIG_ALIGNMENT_2 is any even byte boundary, BRIG_ALIGNMENT_4 is any multiple of four, and so
forth. For more information, see 4.3.10. Declaration and Definition Qualifiers (page 69).

typedef uint8_t BrigAlignment8_t;
enum BrigAlignment {
BRIG_ALIGNMENT_NONE = 0,
BRIG_ALIGNMENT_1 = 1,
BRIG_ALIGNMENT_2 = 2,
BRIG_ALIGNMENT_4 = 3,
BRIG_ALIGNMENT_8 = 4,
BRIG_ALIGNMENT_16 = 5,
BRIG_ALIGNMENT_32 = 6,
BRIG_ALIGNMENT_64 = 7,
BRIG_ALIGNMENT_128 = 8,
BRIG_ALIGNMENT_256 = 9

};

18.3.3 BrigAllocation

BrigAllocation is used to specify the memory allocation for variables. For more information, see
4.3.10. Declaration and Definition Qualifiers (page 69).

typedef uint8_t BrigAllocation8_t;
enum BrigAllocation {
BRIG_ALLOCATION_NONE = 0,
BRIG_ALLOCATION_PROGRAM = 1,
BRIG_ALLOCATION_AGENT = 2,
BRIG_ALLOCATION_AUTOMATIC = 3

};

18.3.4 BrigAluModifierMask

BrigAluModifierMask defines bit masks that can be used to access the modifiers for arithmetic logic
unit instructions.

typedef uint8_t BrigAluModifier8_t;
enum BrigAluModifierMask {
BRIG_ALU_FTZ = 1

};

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

l BRIG_ALU_FTZ — A bit mask that can be used to select the setting for the ftz (floating-point flush
subnormals to zero) modifier. If the instruction does not support the ftz modifier, then must be a 0
value. Otherwise, a 0 value means it is absent and a 1 value means it is present.

18.3.5 BrigAtomicOperation

BrigAtomicOperation is used to specify the type of atomic memory, signal and atomic image
instructions. For more information, see 6.5. Atomic Memory Instructions (page 180) and 6.8. Notification
(signal) Instructions (page 187).

typedef uint8_t BrigAtomicOperation8_t;
enum BrigAtomicOperation {
BRIG_ATOMIC_ADD = 0,
BRIG_ATOMIC_AND = 1,
BRIG_ATOMIC_CAS = 2,
BRIG_ATOMIC_EXCH = 3,
BRIG_ATOMIC_LD = 4,
BRIG_ATOMIC_MAX = 5,
BRIG_ATOMIC_MIN = 6,
BRIG_ATOMIC_OR = 7,
BRIG_ATOMIC_ST = 8,
BRIG_ATOMIC_SUB = 9,
BRIG_ATOMIC_WRAPDEC = 10,
BRIG_ATOMIC_WRAPINC = 11,
BRIG_ATOMIC_XOR = 12,
BRIG_ATOMIC_WAIT_EQ = 13,
BRIG_ATOMIC_WAIT_NE = 14,
BRIG_ATOMIC_WAIT_LT = 15,
BRIG_ATOMIC_WAIT_GTE = 16,
BRIG_ATOMIC_WAITTIMEOUT_EQ = 17,
BRIG_ATOMIC_WAITTIMEOUT_NE = 18,
BRIG_ATOMIC_WAITTIMEOUT_LT = 19,
BRIG_ATOMIC_WAITTIMEOUT_GTE = 20

};

18.3.6 BrigBase

All entries in the hsa_code and hsa_operand sections start with the BrigBase structure.

Syntax is:

struct BrigBase {
uint16_t byteCount;
BrigKind16_t kind;

};

Fields are:

l uint16_t byteSize — Size of the entry in bytes, including the BrigBase structure. Must be a
multiple of 4.

l BrigKind16_t kind — Can be any member of the BrigKind enumeration indicating the kind
of this entry. Must only be BRIG_KIND_DIRECTIVE_* or BRIG_KIND_INST_* for entries in the
hsa_code section, and BRIG_KIND_OPERAND_* for entries in the hsa_operand section. See
18.3.15. BrigKind (page 305).

18.3.7 BrigCompareOperation

BrigCompareOperation is used to specify the type of compare operation. For more information, see
5.18. Compare (cmp) Instruction (page 155).

302 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 303

typedef uint8_t BrigCompareOperation8_t;
enum BrigCompareOperation {
BRIG_COMPARE_EQ = 0,
BRIG_COMPARE_NE = 1,
BRIG_COMPARE_LT = 2,
BRIG_COMPARE_LE = 3,
BRIG_COMPARE_GT = 4,
BRIG_COMPARE_GE = 5,
BRIG_COMPARE_EQU = 6,
BRIG_COMPARE_NEU = 7,
BRIG_COMPARE_LTU = 8,
BRIG_COMPARE_LEU = 9,
BRIG_COMPARE_GTU = 10,
BRIG_COMPARE_GEU = 11,
BRIG_COMPARE_NUM = 12,
BRIG_COMPARE_NAN = 13,
BRIG_COMPARE_SEQ = 14,
BRIG_COMPARE_SNE = 15,
BRIG_COMPARE_SLT = 16,
BRIG_COMPARE_SLE = 17,
BRIG_COMPARE_SGT = 18,
BRIG_COMPARE_SGE = 19,
BRIG_COMPARE_SGEU = 20,
BRIG_COMPARE_SEQU = 21,
BRIG_COMPARE_SNEU = 22,
BRIG_COMPARE_SLTU = 23,
BRIG_COMPARE_SLEU = 24,
BRIG_COMPARE_SNUM = 25,
BRIG_COMPARE_SNAN = 26,
BRIG_COMPARE_SGTU = 27

};

18.3.8 BrigControlDirective

BrigControlDirective is used to specify the type of control directive. For more information, see 13.4.
Control Directives for Low-Level Performance Tuning (page 278).

typedef uint16_t BrigControlDirective16_t;
enum BrigControlDirective {
BRIG_CONTROL_NONE = 0,
BRIG_CONTROL_ENABLEBREAKEXCEPTIONS = 1,
BRIG_CONTROL_ENABLEDETECTEXCEPTIONS = 2,
BRIG_CONTROL_MAXDYNAMICGROUPSIZE = 3,
BRIG_CONTROL_MAXFLATGRIDSIZE = 4,
BRIG_CONTROL_MAXFLATWORKGROUPSIZE = 5,
BRIG_CONTROL_REQUIREDDIM = 6,
BRIG_CONTROL_REQUIREDGRIDSIZE = 7,
BRIG_CONTROL_REQUIREDWORKGROUPSIZE = 8,
BRIG_CONTROL_REQUIRENOPARTIALWORKGROUPS = 9
};

18.3.9 BrigExceptionsMask

BrigExceptionsMask defines the bit mask used to specify a set of exceptions for each of the five
exceptions specified in 12.2. Hardware Exceptions (page 269). For more information, see 11.2. Exception
Instructions (page 260).

typedef uint32_t BrigExceptions32_t;
enum BrigExceptionsMask {
BRIG_EXCEPTIONS_INVALID_OPERATION = 1 << 0,
BRIG_EXCEPTIONS_DIVIDE_BY_ZERO = 1 << 1,
BRIG_EXCEPTIONS_OVERFLOW = 1 << 2,
BRIG_EXCEPTIONS_UNDERFLOW = 1 << 3,
BRIG_EXCEPTIONS_INEXACT = 1 << 4,

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

BRIG_EXCEPTIONS_FIRST_USER_DEFINED = 1 << 16
};

Bits 5 through 15 are reserved, but bits 16 to 32 are available for implementation defined extensions.

18.3.10 BrigExecutableModifierMask

BrigExecutableModifierMask defines bit masks that can be used to access properties about an
executable kernel or function.

typedef uint8_t BrigExecutableModifier8_t;
enum BrigExecutableModifierMask {
BRIG_EXECUTABLE_DEFINITION = 1

};

l BRIG_EXECUTABLE_DEFINITION — A bit mask that can be used to select the setting for whether
an executable is a declaration or a definition. A 0 value means a declaration and a 1 value means a
definition.

See 18.5.1.5. BrigDirectiveExecutable (page 322).

18.3.11 BrigImageChannelOrder

BrigImageChannelOrder is used to specify the order of image components. For more information, see
7.1.4.1. Channel Order (page 198).

typedef uint8_t BrigImageChannelOrder8_t;
enum BrigImageChannelOrder {
BRIG_CHANNEL_ORDER_A = 0,
BRIG_CHANNEL_ORDER_R = 1,
BRIG_CHANNEL_ORDER_RX = 2,
BRIG_CHANNEL_ORDER_RG = 3,
BRIG_CHANNEL_ORDER_RGX = 4,
BRIG_CHANNEL_ORDER_RA = 5,
BRIG_CHANNEL_ORDER_RGB = 6,
BRIG_CHANNEL_ORDER_RGBX = 7,
BRIG_CHANNEL_ORDER_RGBA = 8,
BRIG_CHANNEL_ORDER_BGRA = 9,
BRIG_CHANNEL_ORDER_ARGB = 10,
BRIG_CHANNEL_ORDER_ABGR = 11,
BRIG_CHANNEL_ORDER_SRGB = 12,
BRIG_CHANNEL_ORDER_SRGBX = 13,
BRIG_CHANNEL_ORDER_SRGBA = 14,
BRIG_CHANNEL_ORDER_SBGRA = 15,
BRIG_CHANNEL_ORDER_INTENSITY = 16,
BRIG_CHANNEL_ORDER_LUMINANCE = 17,
BRIG_CHANNEL_ORDER_DEPTH = 18,
BRIG_CHANNEL_ORDER_DEPTH_STENCIL = 19,
BRIG_CHANNEL_ORDER_FIRST_USER_DEFINED = 128

};

Values 20 through 127 are reserved, but values 128 to 255 are available for implementation defined
extensions.

18.3.12 BrigImageChannelType

BrigImageChannelType is used to specify the image channel type. For more information, see 7.1.4.2.
Channel Type (page 200).

typedef uint8_t BrigImageChannelType8_t;
enum BrigImageChannelType {
BRIG_CHANNEL_TYPE_SNORM_INT8 = 0,
BRIG_CHANNEL_TYPE_SNORM_INT16 = 1,

304 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 305

BRIG_CHANNEL_TYPE_UNORM_INT8 = 2,
BRIG_CHANNEL_TYPE_UNORM_INT16 = 3,
BRIG_CHANNEL_TYPE_UNORM_INT24 = 4,
BRIG_CHANNEL_TYPE_UNORM_SHORT_555 = 5,
BRIG_CHANNEL_TYPE_UNORM_SHORT_565 = 6,
BRIG_CHANNEL_TYPE_UNORM_INT_101010 = 7,
BRIG_CHANNEL_TYPE_SIGNED_INT8 = 8,
BRIG_CHANNEL_TYPE_SIGNED_INT16 = 9,
BRIG_CHANNEL_TYPE_SIGNED_INT32 = 10,
BRIG_CHANNEL_TYPE_UNSIGNED_INT8 = 11,
BRIG_CHANNEL_TYPE_UNSIGNED_INT16 = 12,
BRIG_CHANNEL_TYPE_UNSIGNED_INT32 = 13,
BRIG_CHANNEL_TYPE_HALF_FLOAT = 14,
BRIG_CHANNEL_TYPE_FLOAT = 15,
BRIG_CHANNEL_TYPE_FIRST_USER_DEFINED = 128

};

Values 16 through 127 are reserved, but values 128 to 255 are available for implementation defined
extensions.

18.3.13 BrigImageGeometry

BrigImageGeometry is used to specify the number of coordinates needed to access an image. For more
information, see 7.1.3. Image Geometry (page 196).

typedef uint8_t BrigImageGeometry8_t;
enum BrigImageGeometry {
BRIG_GEOMETRY_1D = 0,
BRIG_GEOMETRY_2D = 1,
BRIG_GEOMETRY_3D = 2,
BRIG_GEOMETRY_1DA = 3,
BRIG_GEOMETRY_2DA = 4,
BRIG_GEOMETRY_1DB = 5,
BRIG_GEOMETRY_2DDEPTH = 6,
BRIG_GEOMETRY_2DADEPTH = 7,
BRIG_GEOMETRY_FIRST_USER_DEFINED = 128

};

Values 8 through 127 are reserved, but values 128 to 255 are available for implementation defined
extensions.

18.3.14 BrigImageQuery

BrigImageQuery is used to specify the image property being queried by the queryimage instruction.
For more information, see 7.5. Query Image and Query Sampler Instructions (page 224).

typedef uint8_t BrigImageQuery8_t;
enum BrigImageQuery {
BRIG_IMAGE_QUERY_WIDTH = 0,
BRIG_IMAGE_QUERY_HEIGHT = 1,
BRIG_IMAGE_QUERY_DEPTH = 2,
BRIG_IMAGE_QUERY_ARRAY = 3,
BRIG_IMAGE_QUERY_CHANNELORDER = 4,
BRIG_IMAGE_QUERY_CHANNELTYPE = 5

};

18.3.15 BrigKind

BrigKind is used to indicate the kind of the entries in the hsa_code and hsa_operand sections. The
enumeration values are divided into three groupings: those for directives and instructions which can only be
used for entries in the hsa_code section; and those for operands which can only be used for entries in the
hsa_operand section. To allow for future expansion, each grouping has a distinct range of values.

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

typedef uint16_t BrigKind16_t;
enum BrigKind {
BRIG_KIND_NONE = 0x0000,
BRIG_KIND_DIRECTIVE_BEGIN = 0x1000,

BRIG_KIND_DIRECTIVE_ARG_BLOCK_END = 0x1000,
BRIG_KIND_DIRECTIVE_ARG_BLOCK_START = 0x1001,
BRIG_KIND_DIRECTIVE_COMMENT = 0x1002,
BRIG_KIND_DIRECTIVE_CONTROL = 0x1003,
BRIG_KIND_DIRECTIVE_EXTENSION = 0x1004,
BRIG_KIND_DIRECTIVE_FBARRIER = 0x1005,
BRIG_KIND_DIRECTIVE_FUNCTION = 0x1006,
BRIG_KIND_DIRECTIVE_INDIRECT_FUNCTION = 0x1007,
BRIG_KIND_DIRECTIVE_KERNEL = 0x1008,
BRIG_KIND_DIRECTIVE_LABEL = 0x1009,
BRIG_KIND_DIRECTIVE_LOC = 0x100a,
BRIG_KIND_DIRECTIVE_MODULE = 0x100b,
BRIG_KIND_DIRECTIVE_PRAGMA = 0x100c,
BRIG_KIND_DIRECTIVE_SIGNATURE = 0x100d,
BRIG_KIND_DIRECTIVE_VARIABLE = 0x100e,

BRIG_KIND_DIRECTIVE_END = 0x100f,
BRIG_KIND_INST_BEGIN = 0x2000,

BRIG_KIND_INST_ADDR = 0x2000,
BRIG_KIND_INST_ATOMIC = 0x2001,
BRIG_KIND_INST_BASIC = 0x2002,
BRIG_KIND_INST_BR = 0x2003,
BRIG_KIND_INST_CMP = 0x2004,
BRIG_KIND_INST_CVT = 0x2005,
BRIG_KIND_INST_IMAGE = 0x2006,
BRIG_KIND_INST_LANE = 0x2007,
BRIG_KIND_INST_MEM = 0x2008,
BRIG_KIND_INST_MEM_FENCE = 0x2009,
BRIG_KIND_INST_MOD = 0x200a,
BRIG_KIND_INST_QUERY_IMAGE = 0x200b,
BRIG_KIND_INST_QUERY_SAMPLER = 0x200c,
BRIG_KIND_INST_QUEUE = 0x200d,
BRIG_KIND_INST_SEG = 0x200e,
BRIG_KIND_INST_SEG_CVT = 0x200f,
BRIG_KIND_INST_SIGNAL = 0x2010,
BRIG_KIND_INST_SOURCE_TYPE = 0x2011,

BRIG_KIND_INST_END = 0x2012,
BRIG_KIND_OPERAND_BEGIN = 0x3000,

BRIG_KIND_OPERAND_ADDRESS = 0x3000,
BRIG_KIND_OPERAND_ALIGN = 0x3001,
BRIG_KIND_OPERAND_CODE_LIST = 0x3002,
BRIG_KIND_OPERAND_CODE_REF = 0x3003,
BRIG_KIND_OPERAND_CONSTANT_BYTES = 0x3004,
BRIG_KIND_OPERAND_RESERVED = 0x3005,
BRIG_KIND_OPERAND_CONSTANT_IMAGE = 0x3006,
BRIG_KIND_OPERAND_CONSTANT_OPERAND_LIST = 0x3007,
BRIG_KIND_OPERAND_CONSTANT_SAMPLER = 0x3008,
BRIG_KIND_OPERAND_OPERAND_LIST = 0x3009,
BRIG_KIND_OPERAND_REGISTER = 0x300a,
BRIG_KIND_OPERAND_STRING = 0x300b,
BRIG_KIND_OPERAND_WAVESIZE = 0x3009c,

BRIG_KIND_OPERAND_END = 0x300d
};

18.3.16 BrigLinkage

BrigLinkage is used to specify linkage. For more information, see 4.12. Linkage (page 97).

typedef uint8_t BrigLinkage8_t;
enum BrigLinkage {
BRIG_LINKAGE_NONE = 0,
BRIG_LINKAGE_PROGRAM = 1,

306 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 307

BRIG_LINKAGE_MODULE = 2,
BRIG_LINKAGE_FUNCTION = 3,
BRIG_LINKAGE_ARG = 4

};

18.3.17 BrigMachineModel

BrigMachineModel is used to specify the kind of machine model. For more information, see 2.9. Small
and Large Machine Models (page 39).

typedef uint8_t BrigMachineModel8_t;
enum BrigMachineModel {
BRIG_MACHINE_SMALL = 0,
BRIG_MACHINE_LARGE = 1

};

18.3.18 BrigMemoryModifierMask

BrigMemoryModifierMask defines bit masks that can be used to access the modifiers for memory
instructions.

typedef uint8_t BrigMemoryModifier8_t;
enum BrigMemoryModifierMask {
BRIG_MEMORY_CONST = 1

};

l BRIG_MEMORY_CONST — A bit mask that can be used to select the setting for the const modifier.
A 0 value means it is absent and a 1 value means it is present. If the instruction does not support the
const modifier, then the value must be 0.

18.3.19 BrigMemoryOrder

BrigMemoryOrder is used to specify the memory order of an atomic memory instruction. For more
information, see 6.2.1. Memory Order (page 169).

typedef uint8_t BrigMemoryOrder8_t;
enum BrigMemoryOrder {
BRIG_MEMORY_ORDER_NONE = 0,
BRIG_MEMORY_ORDER_RELAXED = 1,
BRIG_MEMORY_ORDER_SC_ACQUIRE = 2,
BRIG_MEMORY_ORDER_SC_RELEASE = 3,
BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE = 4

};

18.3.20 BrigMemoryScope

BrigMemoryScope is used to specify the memory scope for an atomic memory, signal or memory fence
instruction. For more information, see 6.2.2. Memory Scope (page 170).

typedef uint8_t BrigMemoryScope8_t;
enum BrigMemoryScope {
BRIG_MEMORY_SCOPE_NONE = 0,
BRIG_MEMORY_SCOPE_WORKITEM = 1,
BRIG_MEMORY_SCOPE_WAVEFRONT = 2,
BRIG_MEMORY_SCOPE_WORKGROUP = 3,
BRIG_MEMORY_SCOPE_AGENT = 4,
BRIG_MEMORY_SCOPE_SYSTEM = 5

};

18.3.21 BrigModuleHeader

The first entry in a BRIG module must be BrigModuleHeader. It must be 16-byte aligned. See 18.2. BRIG
Module (page 299).

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

Syntax is:

struct BrigModuleHeader {
char identification[8];
BrigVersion32_t brigMajor;
BrigVersion32_t brigMinor;
uint64_t byteCount;
uint8_t hash[64];
uint32_t reserved;
uint32_t sectionCount;
uint64_t sectionIndex;

};

Fields are:

l char identification[8] — A magic number used to identify that this is a BRIG module. Must
have the ASCII character string value of “HSA BRIG”.

l BrigVersion32_t brigMajor — The BRIG object format major version. When generating
BRIG, must be BRIG_VERSION_BRIG_MAJOR. When consuming BRIG, must be BRIG_VERSION_
BRIG_MAJOR to be compatible with this revision of the BRIG object format specification. See
18.3.38. BrigVersion (page 318).

l BrigVersion32_t brigMinor — The BRIG object format minor version. When generating
BRIG, must be BRIG_VERSION_BRIG_MINOR. When consuming BRIG, brigMajor must be
BRIG_VERSION_BRIG_MAJOR and brigMinor must be less than or equal to BRIG_VERSION_
BRIG_MINOR to be compatible with this revision of the BRIG object format specification. See
18.3.38. BrigVersion (page 318).

l uint64_t byteCount — Size in bytes of the contiguous chunk of memory that contains the
entire BRIG module, including the section index, all the sections and any padding between sections.
Must be a multiple of 16.

l uint8_t hash[64] — A 512-bit value that can be used as a hash of the contents of the BRIG
module. The hash function used, and the data included, is implementation dependent. If unused then
must be set to all zero.

l uint32_t reserved — Must be 0.

l uint32_t sectionCount — Number of sections in the module. Must be at least 3 for the
standard sections. See 18.2. BRIG Module (page 299).

l uint64_t sectionIndex — Byte offset from start of the BRIG module to the base of the BRIG
section index. Must be a multiple of 8. There must be exactly sectionCount entries of type
uint64_t in the the array. See 18.2. BRIG Module (page 299).

18.3.22 BrigOpcode

BrigOpcode is used to specify the opcode for the HSAIL instruction.

typedef uint16_t BrigOpcode16_t;
enum BrigOpcode {
BRIG_OPCODE_NOP = 0,
BRIG_OPCODE_ABS = 1,
BRIG_OPCODE_ADD = 2,
BRIG_OPCODE_BORROW = 3,
BRIG_OPCODE_CARRY = 4,
BRIG_OPCODE_CEIL = 5,
BRIG_OPCODE_COPYSIGN = 6,
BRIG_OPCODE_DIV = 7,

308 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 309

BRIG_OPCODE_FLOOR = 8,
BRIG_OPCODE_FMA = 9,
BRIG_OPCODE_FRACT = 10,
BRIG_OPCODE_MAD = 11,
BRIG_OPCODE_MAX = 12,
BRIG_OPCODE_MIN = 13,
BRIG_OPCODE_MUL = 14,
BRIG_OPCODE_MULHI = 15,
BRIG_OPCODE_NEG = 16,
BRIG_OPCODE_REM = 17,
BRIG_OPCODE_RINT = 18,
BRIG_OPCODE_SQRT = 19,
BRIG_OPCODE_SUB = 20,
BRIG_OPCODE_TRUNC = 21,
BRIG_OPCODE_MAD24 = 22,
BRIG_OPCODE_MAD24HI = 23,
BRIG_OPCODE_MUL24 = 24,
BRIG_OPCODE_MUL24HI = 25,
BRIG_OPCODE_SHL = 26,
BRIG_OPCODE_SHR = 27,
BRIG_OPCODE_AND = 28,
BRIG_OPCODE_NOT = 29,
BRIG_OPCODE_OR = 30,
BRIG_OPCODE_POPCOUNT = 31,
BRIG_OPCODE_XOR = 32,
BRIG_OPCODE_BITEXTRACT = 33,
BRIG_OPCODE_BITINSERT = 34,
BRIG_OPCODE_BITMASK = 35,
BRIG_OPCODE_BITREV = 36,
BRIG_OPCODE_BITSELECT = 37,
BRIG_OPCODE_FIRSTBIT = 38,
BRIG_OPCODE_LASTBIT = 39,
BRIG_OPCODE_COMBINE = 40,
BRIG_OPCODE_EXPAND = 41,
BRIG_OPCODE_LDA = 42,
BRIG_OPCODE_MOV = 43,
BRIG_OPCODE_SHUFFLE = 44,
BRIG_OPCODE_UNPACKHI = 45,
BRIG_OPCODE_UNPACKLO = 46,
BRIG_OPCODE_PACK = 47,
BRIG_OPCODE_UNPACK = 48,
BRIG_OPCODE_CMOV = 49,
BRIG_OPCODE_CLASS = 50,
BRIG_OPCODE_NCOS = 51,
BRIG_OPCODE_NEXP2 = 52,
BRIG_OPCODE_NFMA = 53,
BRIG_OPCODE_NLOG2 = 54,
BRIG_OPCODE_NRCP = 55,
BRIG_OPCODE_NRSQRT = 56,
BRIG_OPCODE_NSIN = 57,
BRIG_OPCODE_NSQRT = 58,
BRIG_OPCODE_BITALIGN = 59,
BRIG_OPCODE_BYTEALIGN = 60,
BRIG_OPCODE_PACKCVT = 61,
BRIG_OPCODE_UNPACKCVT = 62,
BRIG_OPCODE_LERP = 63,
BRIG_OPCODE_SAD = 64,
BRIG_OPCODE_SADHI = 65,
BRIG_OPCODE_SEGMENTP = 66,
BRIG_OPCODE_FTOS = 67,
BRIG_OPCODE_STOF = 68,
BRIG_OPCODE_CMP = 69,
BRIG_OPCODE_CVT = 70,
BRIG_OPCODE_LD = 71,

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

BRIG_OPCODE_ST = 72,
BRIG_OPCODE_ATOMIC = 73,
BRIG_OPCODE_ATOMICNORET = 74,
BRIG_OPCODE_SIGNAL = 75,
BRIG_OPCODE_SIGNALNORET = 76,
BRIG_OPCODE_MEMFENCE = 77,
BRIG_OPCODE_RDIMAGE = 78,
BRIG_OPCODE_LDIMAGE = 79,
BRIG_OPCODE_STIMAGE = 80,
BRIG_OPCODE_IMAGEFENCE = 81,
BRIG_OPCODE_QUERYIMAGE = 82,
BRIG_OPCODE_QUERYSAMPLER = 83,
BRIG_OPCODE_CBR = 84,
BRIG_OPCODE_BR = 85,
BRIG_OPCODE_SBR = 86,
BRIG_OPCODE_BARRIER = 87,
BRIG_OPCODE_WAVEBARRIER = 88,
BRIG_OPCODE_ARRIVEFBAR = 89,
BRIG_OPCODE_INITFBAR = 90,
BRIG_OPCODE_JOINFBAR = 91,
BRIG_OPCODE_LEAVEFBAR = 92,
BRIG_OPCODE_RELEASEFBAR = 93,
BRIG_OPCODE_WAITFBAR = 94,
BRIG_OPCODE_LDF = 95,
BRIG_OPCODE_ACTIVELANECOUNT = 96,
BRIG_OPCODE_ACTIVELANEID = 97,
BRIG_OPCODE_ACTIVELANEMASK = 98,
BRIG_OPCODE_ACTIVELANEPERMUTE = 99,
BRIG_OPCODE_CALL = 100,
BRIG_OPCODE_SCALL = 101,
BRIG_OPCODE_ICALL = 102,
BRIG_OPCODE_RET = 103,
BRIG_OPCODE_ALLOCA = 104,
BRIG_OPCODE_CURRENTWORKGROUPSIZE = 105,
BRIG_OPCODE_CURRENTWORKITEMFLATID = 106,
BRIG_OPCODE_DIM = 107,
BRIG_OPCODE_GRIDGROUPS = 108,
BRIG_OPCODE_GRIDSIZE = 109,
BRIG_OPCODE_PACKETCOMPLETIONSIG = 110,
BRIG_OPCODE_PACKETID = 111,
BRIG_OPCODE_WORKGROUPID = 112,
BRIG_OPCODE_WORKGROUPSIZE = 113,
BRIG_OPCODE_WORKITEMABSID = 114,
BRIG_OPCODE_WORKITEMFLATABSID = 115,
BRIG_OPCODE_WORKITEMFLATID = 116,
BRIG_OPCODE_WORKITEMID = 117,
BRIG_OPCODE_CLEARDETECTEXCEPT = 118,
BRIG_OPCODE_GETDETECTEXCEPT = 119,
BRIG_OPCODE_SETDETECTEXCEPT = 120,
BRIG_OPCODE_ADDQUEUEWRITEINDEX = 121,
BRIG_OPCODE_CASQUEUEWRITEINDEX = 122,
BRIG_OPCODE_LDQUEUEREADINDEX = 123,
BRIG_OPCODE_LDQUEUEWRITEINDEX = 124,
BRIG_OPCODE_STQUEUEREADINDEX = 125,
BRIG_OPCODE_STQUEUEWRITEINDEX = 126,
BRIG_OPCODE_CLOCK = 127,
BRIG_OPCODE_CUID = 128,
BRIG_OPCODE_DEBUGTRAP = 129,
BRIG_OPCODE_GROUPBASEPTR = 1230
BRIG_OPCODE_KERNARGBASEPTR = 131,
BRIG_OPCODE_LANEID = 132,
BRIG_OPCODE_MAXCUID = 133,
BRIG_OPCODE_MAXWAVEID = 134,
BRIG_OPCODE_NULLPTR = 135,

310 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 311

BRIG_OPCODE_WAVEID = 136,
};

Values 136 through 32767 are reserved, but values 32768 to 65535 are available for implementation
defined extensions.

18.3.23 BrigPack

BrigPack is used to specify the kind of packing control for packed data. For more information, see 4.14.
Packing Controls for Packed Data (page 101).

typedef uint8_t BrigPack8_t;
enum BrigPack {
BRIG_PACK_NONE = 0,
BRIG_PACK_PP = 1,
BRIG_PACK_PS = 2,
BRIG_PACK_SP = 3,
BRIG_PACK_SS = 4,
BRIG_PACK_S = 5,
BRIG_PACK_P = 6,
BRIG_PACK_PPSAT = 7,
BRIG_PACK_PSSAT = 8,
BRIG_PACK_SPSAT = 9,
BRIG_PACK_SSSAT = 10,
BRIG_PACK_SSAT = 11,
BRIG_PACK_PSAT = 12

};

18.3.24 BrigProfile

BrigProfile is used to specify the kind of profile. For more information, see 16.1. What Are Profiles?
(page 288).

typedef uint8_t BrigProfile8_t;
enum BrigProfile {
BRIG_PROFILE_BASE = 0,
BRIG_PROFILE_FULL = 1

};

18.3.25 BrigRegisterKind

BrigRegisterKind is used to specify the kind of HSAIL register. For more information, see 4.7. Registers
(page 79).

typedef uint16_t BrigRegisterKind16_t;
enum BrigRegisterKind {
BRIG_REGISTER_KIND_CONTROL = 0,
BRIG_REGISTER_KIND_SINGLE = 1,
BRIG_REGISTER_KIND_DOUBLE = 2,
BRIG_REGISTER_KIND_QUAD = 3

};

18.3.26 BrigRound

BrigRound is used to specify rounding. For more information, see 4.19.2. Floating-Point Rounding (page
109) and 5.19.3. Rules for Rounding for Conversions (page 162).

If the instruction does not support a rounding mode, then BRIG_ROUND_NONE must be used.

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

If the instruction supports a floating-point rounding mode but does not explicitly specify one, then BRIG_
ROUND_FLOAT_DEFAULT must be specified. If the instruction supports an integer rounding mode but does
not explicitly specify one, then BRIG_ROUND_INTEGER_ZERO must be specified. Otherwise, the
appropriate rounding mode must be used.

typedef uint8_t BrigRound8_t;
enum BrigRound {
BRIG_ROUND_NONE = 0,
BRIG_ROUND_FLOAT_DEFAULT = 1,
BRIG_ROUND_FLOAT_NEAR_EVEN = 2,
BRIG_ROUND_FLOAT_ZERO = 3,
BRIG_ROUND_FLOAT_PLUS_INFINITY = 4,
BRIG_ROUND_FLOAT_MINUS_INFINITY = 5,
BRIG_ROUND_INTEGER_NEAR_EVEN = 6,
BRIG_ROUND_INTEGER_ZERO = 7,
BRIG_ROUND_INTEGER_PLUS_INFINITY = 8,
BRIG_ROUND_INTEGER_MINUS_INFINITY = 9,
BRIG_ROUND_INTEGER_NEAR_EVEN_SAT = 10,
BRIG_ROUND_INTEGER_ZERO_SAT = 11,
BRIG_ROUND_INTEGER_PLUS_INFINITY_SAT = 12,
BRIG_ROUND_INTEGER_MINUS_INFINITY_SAT = 13,
BRIG_ROUND_INTEGER_SIGNALING_NEAR_EVEN = 14,
BRIG_ROUND_INTEGER_SIGNALING_ZERO = 15,
BRIG_ROUND_INTEGER_SIGNALING_PLUS_INFINITY = 16,
BRIG_ROUND_INTEGER_SIGNALING_MINUS_INFINITY = 17,
BRIG_ROUND_INTEGER_SIGNALING_NEAR_EVEN_SAT = 18,
BRIG_ROUND_INTEGER_SIGNALING_ZERO_SAT = 19,
BRIG_ROUND_INTEGER_SIGNALING_PLUS_INFINITY_SAT = 20,
BRIG_ROUND_INTEGER_SIGNALING_MINUS_INFINITY_SAT = 21

};

18.3.27 BrigSamplerAddressing

BrigSamplerAddressing is used to specify the addressing mode for the addressing field in the
sampler object. For more information, see 7.1.6.2. Addressing Mode (page 207).

typedef uint8_t BrigSamplerAddressing8_t;
enum BrigSamplerAddressing {
BRIG_ADDRESSING_UNDEFINED = 0,
BRIG_ADDRESSING_CLAMP_TO_EDGE = 1,
BRIG_ADDRESSING_CLAMP_TO_BORDER = 2,
BRIG_ADDRESSING_REPEAT = 3,
BRIG_ADDRESSING_MIRRORED_REPEAT = 4,
BRIG_ADDRESSING_FIRST_USER_DEFINED = 128

};

Values 5 through 127 are reserved, but values 128 to 255 are available for implementation defined
extensions.

18.3.28 BrigSamplerCoordNormalization

BrigSamplerCoordNormalization is used to specify the setting for the coord field in the sampler
object. For more information, see 7.1.6.1. Coordinate Normalization Mode (page 206).

typedef uint8_t BrigSamplerCoordNormalization8_t;
enum BrigSamplerCoordNormalization {
BRIG_COORD_UNNORMALIZED = 0,
BRIG_COORD_NORMALIZED = 1

};

312 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 313

18.3.29 BrigSamplerFilter

BrigSamplerFilter is used to specify the setting for the filter field in the sampler object. For more
information, see 7.1.6.3. Filter Mode (page 209).

typedef uint8_t BrigSamplerFilter8_t;
enum BrigSamplerFilter {
BRIG_FILTER_NEAREST = 0,
BRIG_FILTER_LINEAR = 1,
BRIG_FILTER_FIRST_USER_DEFINED = 128

};

Values 2 through 127 are reserved, but values 128 to 255 are available for implementation defined
extensions.

18.3.30 BrigSamplerQuery

BrigSamplerQuery is used to specify the sampler property being queried by the querysampler
instruction. For more information, see 7.5. Query Image and Query Sampler Instructions (page 224).

typedef uint8_t BrigSamplerQuery8_t;
enum BrigSamplerQuery {
BRIG_SAMPLER_QUERY_ADDRESSING = 0,
BRIG_SAMPLER_QUERY_COORD = 1,
BRIG_SAMPLER_QUERY_FILTER = 2

};

18.3.31 BrigSectionIndex

A BRIG module can have a number of BRIG sections. Every module must have a data, code and operand
section with the indices in the BRIG section index array defined by BrigSectionIndex. Any additional
sections have an index starting after these. See 18.2. BRIG Module (page 299).

typedef uint32_t BrigSectionIndex32_t;
enum BrigSectionIndex {
BRIG_SECTION_INDEX_DATA = 0,
BRIG_SECTION_INDEX_CODE = 1,
BRIG_SECTION_INDEX_OPERAND = 2,
BRIG_SECTION_INDEX_BEGIN_IMPLEMENTATION_DEFINED = 3

};

18.3.32 BrigSectionHeader

The first entry in every BRIG section must be BrigSectionHeader. It must be 16-byte aligned. See 18.2.
BRIG Module (page 299).

There are no section termination flags. Any code that generates BRIG needs to correctly fill in each section's
header. A section entry offset of 0 can be used to indicate no entry, since the first entry in each section
starts after the header.

Syntax is:

struct BrigSectionHeader {
uint64_t byteCount;
uint32_t headerByteCount;
uint32_t nameLength;
uint8_t name[1];

};

Field is:

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

l uint64_t byteCount — Size in bytes of the section, including the size of the
BrigSectionHeader. Must be a multiple of 4.

l uint32_t headerByteCount — Size of the header in bytes, which is also equal to the offset
from the beginning of the section to the first entry in the section. Must be a multiple of 4.

l uint32_t nameLength — Length of the section name in bytes.

l uint8_t name[1] — Section name, nameLength bytes long.

The section name may be followed by any implementation specific data. This must be followed by sufficient
zero padding bytes to make headerByteCount a multiple of 4.

18.3.33 BrigSegCvtModifierMask

BrigSegCvtModifierMask defines bit masks that can be used to access the modifiers for instructions
which convert between segment and flat addresses.

typedef uint8_t BrigSegCvtModifier8_t;
enum BrigSegCvtModifierMask {
BRIG_SEG_CVT_NONULL = 1

};

l BRIG_SEG_CVT_NONULL — A bit mask that can be used to select the setting for the nonull
modifier. A 0 value means it is absent and a 1 value means it is present. If the instruction does not
support the nonull modifier, then the value must be 0.

18.3.34 BrigSegment

BrigSegment is used to specify the memory segment for a symbol or memory address. In the case of a
memory address, it can also specify that a flat address is being used. For more information, see 2.8.
Segments (page 31).

typedef uint8_t BrigSegment8_t;
enum BrigSegment {
BRIG_SEGMENT_NONE = 0,
BRIG_SEGMENT_FLAT = 1,
BRIG_SEGMENT_GLOBAL = 2,
BRIG_SEGMENT_READONLY = 3,
BRIG_SEGMENT_KERNARG = 4,
BRIG_SEGMENT_GROUP = 5,
BRIG_SEGMENT_PRIVATE = 6,
BRIG_SEGMENT_SPILL = 7,
BRIG_SEGMENT_ARG = 8,
BRIG_SEGMENT_FIRST_USER_DEFINED = 128

};

Values 9 through 127 are reserved, but values 128 to 255 are available for implementation defined
extensions.

18.3.35 BrigType

BrigType is used to specify the data compound type of instructions, operands, and variables.

The BrigType enumeration is encoded to make it easy to determine if the type is packed or an array. If
packed, it is also easy to determine the packed element compound type and the bit size of the packed type.
If array, it is also easy to determine the array element compound type.

The base type is encoded in the bottom 5 bits, the packed type size recorded in the next 2 bits, and whether
it is an array type in the next bit.

314 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 315

For the packed type size: 0 means not a packed type, 1 means a 32-bit packed type, 2 means a 64-bit packed
type, and 3 means a 128-bit packed type.

Masks, shifts, and enumeration values are provided to access the base type and access and test the packed
type size.

NOTE: An array of the b1 type is not allowed.

For more information, see 4.13. Data Types (page 99).

enum {
BRIG_TYPE_BASE_SIZE = 5,
BRIG_TYPE_PACK_SIZE = 2,
BRIG_TYPE_ARRAY_SIZE = 1,

BRIG_TYPE_BASE_SHIFT = 0,
BRIG_TYPE_PACK_SHIFT = BRIG_TYPE_BASE_SHIFT + BRIG_TYPE_BASE_SIZE,
BRIG_TYPE_ARRAY_SHIFT = BRIG_TYPE_PACK_SHIFT + BRIG_TYPE_PACK_SIZE,

BRIG_TYPE_BASE_MASK = ((1 << BRIG_TYPE_BASE_SIZE) - 1) << BRIG_TYPE_BASE_SHIFT,
BRIG_TYPE_PACK_MASK = ((1 << BRIG_TYPE_PACK_SIZE) - 1) << BRIG_TYPE_PACK_SHIFT,
BRIG_TYPE_ARRAY_MASK = ((1 << BRIG_TYPE_ARRAY_SIZE) - 1) << BRIG_TYPE_ARRAY_SHIFT,

BRIG_TYPE_PACK_NONE = 0 << BRIG_TYPE_PACK_SHIFT,
BRIG_TYPE_PACK_32 = 1 << BRIG_TYPE_PACK_SHIFT,
BRIG_TYPE_PACK_64 = 2 << BRIG_TYPE_PACK_SHIFT,
BRIG_TYPE_PACK_128 = 3 << BRIG_TYPE_PACK_SHIFT,

BRIG_TYPE_ARRAY = 1 << BRIG_TYPE_ARRAY_SHIFT
};

typedef uint16_t BrigType16_t;
enum BrigType {
BRIG_TYPE_NONE = 0,

BRIG_TYPE_U8 = 1,
BRIG_TYPE_U16 = 2,
BRIG_TYPE_U32 = 3,
BRIG_TYPE_U64 = 4,

BRIG_TYPE_S8 = 5,
BRIG_TYPE_S16 = 6,
BRIG_TYPE_S32 = 7,
BRIG_TYPE_S64 = 8,

BRIG_TYPE_F16 = 9,
BRIG_TYPE_F32 = 10,
BRIG_TYPE_F64 = 11,

BRIG_TYPE_B1 = 12,
BRIG_TYPE_B8 = 13,
BRIG_TYPE_B16 = 14,
BRIG_TYPE_B32 = 15,
BRIG_TYPE_B64 = 16,
BRIG_TYPE_B128 = 17,

BRIG_TYPE_SAMP = 18,
BRIG_TYPE_ROIMG = 19,
BRIG_TYPE_WOIMG = 20,
BRIG_TYPE_RWIMG = 21,

BRIG_TYPE_SIG32 = 22,
BRIG_TYPE_SIG64 = 23,

BRIG_TYPE_U8X4 = BRIG_TYPE_U8 | BRIG_TYPE_PACK_32,

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

BRIG_TYPE_U8X8 = BRIG_TYPE_U8 | BRIG_TYPE_PACK_64,
BRIG_TYPE_U8X16 = BRIG_TYPE_U8 | BRIG_TYPE_PACK_128,

BRIG_TYPE_U16X2 = BRIG_TYPE_U16 | BRIG_TYPE_PACK_32,
BRIG_TYPE_U16X4 = BRIG_TYPE_U16 | BRIG_TYPE_PACK_64,
BRIG_TYPE_U16X8 = BRIG_TYPE_U16 | BRIG_TYPE_PACK_128,

BRIG_TYPE_U32X2 = BRIG_TYPE_U32 | BRIG_TYPE_PACK_64,
BRIG_TYPE_U32X4 = BRIG_TYPE_U32 | BRIG_TYPE_PACK_128,

BRIG_TYPE_U64X2 = BRIG_TYPE_U64 | BRIG_TYPE_PACK_128,

BRIG_TYPE_S8X4 = BRIG_TYPE_S8 | BRIG_TYPE_PACK_32,
BRIG_TYPE_S8X8 = BRIG_TYPE_S8 | BRIG_TYPE_PACK_64,
BRIG_TYPE_S8X16 = BRIG_TYPE_S8 | BRIG_TYPE_PACK_128,

BRIG_TYPE_S16X2 = BRIG_TYPE_S16 | BRIG_TYPE_PACK_32,
BRIG_TYPE_S16X4 = BRIG_TYPE_S16 | BRIG_TYPE_PACK_64,
BRIG_TYPE_S16X8 = BRIG_TYPE_S16 | BRIG_TYPE_PACK_128,

BRIG_TYPE_S32X2 = BRIG_TYPE_S32 | BRIG_TYPE_PACK_64,
BRIG_TYPE_S32X4 = BRIG_TYPE_S32 | BRIG_TYPE_PACK_128,

BRIG_TYPE_S64X2 = BRIG_TYPE_S64 | BRIG_TYPE_PACK_128,

BRIG_TYPE_F16X2 = BRIG_TYPE_F16 | BRIG_TYPE_PACK_32,
BRIG_TYPE_F16X4 = BRIG_TYPE_F16 | BRIG_TYPE_PACK_64,
BRIG_TYPE_F16X8 = BRIG_TYPE_F16 | BRIG_TYPE_PACK_128,

BRIG_TYPE_F32X2 = BRIG_TYPE_F32 | BRIG_TYPE_PACK_64,
BRIG_TYPE_F32X4 = BRIG_TYPE_F32 | BRIG_TYPE_PACK_128,

BRIG_TYPE_F64X2 = BRIG_TYPE_F64 | BRIG_TYPE_PACK_128,

BRIG_TYPE_U8_ARRAY = BRIG_TYPE_U8 | BRIG_TYPE_ARRAY,
BRIG_TYPE_U16_ARRAY = BRIG_TYPE_U16 | BRIG_TYPE_ARRAY,
BRIG_TYPE_U32_ARRAY = BRIG_TYPE_U32 | BRIG_TYPE_ARRAY,
BRIG_TYPE_U64_ARRAY = BRIG_TYPE_U64 | BRIG_TYPE_ARRAY,

BRIG_TYPE_S8_ARRAY = BRIG_TYPE_S8 | BRIG_TYPE_ARRAY,
BRIG_TYPE_S16_ARRAY = BRIG_TYPE_S16 | BRIG_TYPE_ARRAY,
BRIG_TYPE_S32_ARRAY = BRIG_TYPE_S32 | BRIG_TYPE_ARRAY,
BRIG_TYPE_S64_ARRAY = BRIG_TYPE_S64 | BRIG_TYPE_ARRAY,

BRIG_TYPE_F16_ARRAY = BRIG_TYPE_F16 | BRIG_TYPE_ARRAY,
BRIG_TYPE_F32_ARRAY = BRIG_TYPE_F32 | BRIG_TYPE_ARRAY,
BRIG_TYPE_F64_ARRAY = BRIG_TYPE_F64 | BRIG_TYPE_ARRAY,

BRIG_TYPE_B8_ARRAY = BRIG_TYPE_B8 | BRIG_TYPE_ARRAY,
BRIG_TYPE_B16_ARRAY = BRIG_TYPE_B16 | BRIG_TYPE_ARRAY,
BRIG_TYPE_B32_ARRAY = BRIG_TYPE_B32 | BRIG_TYPE_ARRAY,
BRIG_TYPE_B64_ARRAY = BRIG_TYPE_B64 | BRIG_TYPE_ARRAY,
BRIG_TYPE_B128_ARRAY = BRIG_TYPE_B128 | BRIG_TYPE_ARRAY,

BRIG_TYPE_SAMP_ARRAY = BRIG_TYPE_SAMP | BRIG_TYPE_ARRAY,
BRIG_TYPE_ROIMG_ARRAY = BRIG_TYPE_ROIMG | BRIG_TYPE_ARRAY,
BRIG_TYPE_WOIMG_ARRAY = BRIG_TYPE_WOIMG | BRIG_TYPE_ARRAY,
BRIG_TYPE_RWIMG_ARRAY = BRIG_TYPE_RWIMG | BRIG_TYPE_ARRAY,

BRIG_TYPE_SIG32_ARRAY = BRIG_TYPE_SIG32 | BRIG_TYPE_ARRAY,
BRIG_TYPE_SIG64_ARRAY = BRIG_TYPE_SIG64 | BRIG_TYPE_ARRAY,

BRIG_TYPE_U8X4_ARRAY = BRIG_TYPE_U8X4 | BRIG_TYPE_ARRAY,
BRIG_TYPE_U8X8_ARRAY = BRIG_TYPE_U8X8 | BRIG_TYPE_ARRAY,

316 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 317

BRIG_TYPE_U8X16_ARRAY = BRIG_TYPE_U8X16 | BRIG_TYPE_ARRAY,

BRIG_TYPE_U16X2_ARRAY = BRIG_TYPE_U16X2 | BRIG_TYPE_ARRAY,
BRIG_TYPE_U16X4_ARRAY = BRIG_TYPE_U16X4 | BRIG_TYPE_ARRAY,
BRIG_TYPE_U16X8_ARRAY = BRIG_TYPE_U16X8 | BRIG_TYPE_ARRAY,

BRIG_TYPE_U32X2_ARRAY = BRIG_TYPE_U32X2 | BRIG_TYPE_ARRAY,
BRIG_TYPE_U32X4_ARRAY = BRIG_TYPE_U32X4 | BRIG_TYPE_ARRAY,

BRIG_TYPE_U64X2_ARRAY = BRIG_TYPE_U64X2 | BRIG_TYPE_ARRAY,

BRIG_TYPE_S8X4_ARRAY = BRIG_TYPE_S8X4 | BRIG_TYPE_ARRAY,
BRIG_TYPE_S8X8_ARRAY = BRIG_TYPE_S8X8 | BRIG_TYPE_ARRAY,
BRIG_TYPE_S8X16_ARRAY = BRIG_TYPE_S8X16 | BRIG_TYPE_ARRAY,

BRIG_TYPE_S16X2_ARRAY = BRIG_TYPE_S16X2 | BRIG_TYPE_ARRAY,
BRIG_TYPE_S16X4_ARRAY = BRIG_TYPE_S16X4 | BRIG_TYPE_ARRAY,
BRIG_TYPE_S16X8_ARRAY = BRIG_TYPE_S16X8 | BRIG_TYPE_ARRAY,

BRIG_TYPE_S32X2_ARRAY = BRIG_TYPE_S32X2 | BRIG_TYPE_ARRAY,
BRIG_TYPE_S32X4_ARRAY = BRIG_TYPE_S32X4 | BRIG_TYPE_ARRAY,

BRIG_TYPE_S64X2_ARRAY = BRIG_TYPE_S64X2 | BRIG_TYPE_ARRAY,

BRIG_TYPE_F16X2_ARRAY = BRIG_TYPE_F16X2 | BRIG_TYPE_ARRAY,
BRIG_TYPE_F16X4_ARRAY = BRIG_TYPE_F16X4 | BRIG_TYPE_ARRAY,
BRIG_TYPE_F16X8_ARRAY = BRIG_TYPE_F16X8 | BRIG_TYPE_ARRAY,

BRIG_TYPE_F32X2_ARRAY = BRIG_TYPE_F32X2 | BRIG_TYPE_ARRAY,
BRIG_TYPE_F32X4_ARRAY = BRIG_TYPE_F32X4 | BRIG_TYPE_ARRAY,

BRIG_TYPE_F64X2_ARRAY = BRIG_TYPE_F64X2 | BRIG_TYPE_ARRAY
};

18.3.36 BrigUint64

BrigUInt64 is used to represent a 64-bit unsigned integer value. The value is split into two 32-bit
components to conform to the BRIG restriction that entries only require 32-bit alignment.

Syntax is:

struct BrigUInt64 {
uint32_t lo;
uint32_t hi;
};

Fields are:

l uint32_t lo — The low 32 bits of the 64-bit integer. lo is combined with hi to form a 64-bit
value:

value = (uint64_t(hi) << 32) | uint64_t(lo)

l uint32_t hi — The high 32 bits of the 64-bit integer.

18.3.37 BrigVariableModifierMask

BrigVariableModifierMask defines bit masks that can be used to access properties about a variable.

typedef uint8_t BrigVariableModifier8_t;
enum BrigVariableModifierMask {
BRIG_VARIABLE_DEFINITION = 1,
BRIG_VARIABLE_CONST = 2

};

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

Chapter 18. BRIG: HSAILBinary Format 18.3 Support Types

l BRIG_VARIABLE_DEFINITION — A bit mask that can be used to select the setting for whether a
variable is a declaration or a definition. A 0 value means a declaration and a 1 value means a
definition.

l BRIG_VARIABLE_CONST — A bit mask that can be used to select the setting for the const
qualifier. A 0 value means the variable can change value after it has been created and initilaized; a 1
value means the variable value will not change after it has been created an initialized. Only global or
readonly segment variables can be constant.

See 18.5.1.13. BrigDirectiveVariable (page 327).

18.3.38 BrigVersion

The literal values of BrigVersion define the versions of HSAIL virtual ISA and BRIG object format defined
by this revision of the HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming Model,
Compiler Writer’s Guide, and Object Format (BRIG).

typedef_uint32_t BrigVersion32_t;
enum BrigVersion {
BRIG_VERSION_HSAIL_MAJOR = 1,
BRIG_VERSION_HSAIL_MINOR = 0,
BRIG_VERSION_BRIG_MAJOR = 1,
BRIG_VERSION_BRIG_MINOR = 0

};

l BRIG_VERSION_HSAIL_MAJOR — The major version of this revision of the HSAIL virtual ISA
specification. This is the value used in the module header major operand. See Chapter 14. module
Header (page 284). BRIG with an HSAIL major version different from this value is not compatible with
this revision of the HSAIL virtual ISA specification.

l BRIG_VERSION_HSAIL_MINOR — The minor version of this revision of the HSAIL virtual ISA
specification. This is the value used in the module header minor operand. See Chapter 14. module
Header (page 284). BRIG is compatible with this revision of the HSAIL virtual ISA specification only if it
has the same HSAIL major version and an HSAIL minor version less than or equal to this value.

l BRIG_VERSION_BRIG_MAJOR — The major version of this revision of the BRIG object format
specification. BRIG with a BRIG major version different from this value is not compatible with this
revision of the BRIG object format specification.

l BRIG_VERSION_BRIG_MINOR — The minor version of this revision of the BRIG object format
specification. BRIG is compatible with this revision of the BRIG object format specification only if it
has the same BRIG major version and a BRIG minor version less than or equal to this value.

18.3.39 BrigWidth

BrigWidth is used to specify the width modifier. Because the width must be a power of 2 between 1 and
231 inclusive, only enumerations for the power of 2 values are present, and they are numbered as log

2
(n) +

1 of the value. In addition, width(all) and width(WAVESIZE) have an enumeration value that comes
after the explicit numbered enumerations. This makes it is easy for a finalizer to determine if a width value
is greater than or equal to the wavefront size by simply doing a comparison of greater than or equal with
the enumeration value that corresponds to the actual wavefront size of the implementation. For more
information, see 2.12. Divergent Control Flow (page 41).

typedef uint8_t BrigWidth8_t;
enum BrigWidth {
BRIG_WIDTH_NONE = 0,

318 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 319

BRIG_WIDTH_1 = 1,
BRIG_WIDTH_2 = 2,
BRIG_WIDTH_4 = 3,
BRIG_WIDTH_8 = 4,
BRIG_WIDTH_16 = 5,
BRIG_WIDTH_32 = 6,
BRIG_WIDTH_64 = 7,
BRIG_WIDTH_128 = 8,
BRIG_WIDTH_256 = 9,
BRIG_WIDTH_512 = 10,
BRIG_WIDTH_1024 = 11,
BRIG_WIDTH_2048 = 12,
BRIG_WIDTH_4096 = 13,
BRIG_WIDTH_8192 = 14,
BRIG_WIDTH_16384 = 15,
BRIG_WIDTH_32768 = 16,
BRIG_WIDTH_65536 = 17,
BRIG_WIDTH_131072 = 18,
BRIG_WIDTH_262144 = 19,
BRIG_WIDTH_524288 = 20,
BRIG_WIDTH_1048576 = 21,
BRIG_WIDTH_2097152 = 22,
BRIG_WIDTH_4194304 = 23,
BRIG_WIDTH_8388608 = 24,
BRIG_WIDTH_16777216 = 25,
BRIG_WIDTH_33554432 = 26,
BRIG_WIDTH_67108864 = 27,
BRIG_WIDTH_134217728 = 28,
BRIG_WIDTH_268435456 = 29,
BRIG_WIDTH_536870912 = 30,
BRIG_WIDTH_1073741824 = 31,
BRIG_WIDTH_2147483648 = 32,
BRIG_WIDTH_WAVESIZE = 33,
BRIG_WIDTH_ALL = 34

};

18.4 hsa_data Section
The hsa_data section must start with a BrigSectionHeader entry. The name of the section must be
hsa_data. See 18.3.32. BrigSectionHeader (page 313).

The hsa_data section is used to store:

l Textual character strings used for identifiers and string operands within HSAIL.

l Value of variable initializers.

l Value of immediate operands.

l Variable length arrays of offsets into other sections that are used by entries in the hsa_code and
hsa_operand sections. The number of elements in the array is determined by dividing the byte
count of the entry by 4. See 18.3.1. Section Offsets (page 300).

An entry comprises both the length of the data in bytes and the actual bytes of the data.

An offset value into the hsa_data section references the start of the BrigData, not the data, which starts
at bytes within BrigData.

Entries for HSAIL identifiers and string operand values are stored as ASCII character strings without null
termination. The length is the number of characters in the identifier.

Data entries are stored as raw bytes with no terminating byte. The length is the number of bytes in the data.

Chapter 18. BRIG: HSAILBinary Format 18.4 hsa_data Section

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

In both cases, the length does not include the number of padding bytes that must be added to make the
entry a multiple of 4.

Each BrigData starts on a 4-byte boundary. Any required padding bytes after the data to make the entry a
multiple of 4 bytes must be 0.

To reduce the size of the hsa_data section it is allowed, but not required, to reference an already created
BrigData entry, rather than create duplicate BrigData entries.

Syntax is:

struct BrigData {
uint32_t byteCount;
uint8_t bytes[1];
};

Fields are:

l uint32_t byteCount — Number of bytes in the data. Does not include the size byteCount
field, or any padding bytes that have to be added to ensure the next BrigData starts on a 4-byte
boundary. Therefore, to locate the start of the next BrigData, the value ((7 + byteCount) /
4) * 4) must be added to the offset of the current BrigData.

l uint8_t bytes[1] — Variable-sized. Must be allocated with (((byteCount + 3) / 4) *
4) elements. Any elements after byteCount - 1 must be 0. Bytes 0 to byteCount - 1 contain
the data.

18.5 hsa_code Section
The hsa_code section contains the directives and instructions of the BRIG module. They appear in the
same order as they appear in the text format.

The hsa_code section must start with a BrigSectionHeader entry. The name of the section must be
hsa_code. See 18.3.32. BrigSectionHeader (page 313).

All entries in the hsa_code section must start with a BrigBase structure (see 18.3.6. BrigBase (page
302)). The kind field of BrigBase specifies the kind of the entry, which also indicates if it is a directive
entry (see 18.5.1. Directive Entries (below)) or instruction entry (see 18.5.2. Instruction Entries (page 329)).

The entries for directives and instructions that are part of a kernel or function code block are ordered after
a BrigDirectiveExecutable entry for the kernel or function, and before the entry referenced by the
nextModuleEntry field of the BrigDirectiveExecutable entry. Instruction entries can only be part
of a code block. All other entries are module directives.

18.5.1 Directive Entries

BRIG directives corresponding to HSAIL module header, annotations, directives, kernels, functions,
signatures, variables, formal arguments, fbarriers and labels. BRIG directives are also used to specify the
start and end of an arg block. These provide information to the finalizer and other tools and do not generate
code.

The kind field of the BrigBase structure at the start of every BrigDirective* must be in the right-
open interval [BRIG_KIND_DIRECTIVE_BEGIN, BRIG_KIND_DIRECTIVE_END). See 18.3.15. BrigKind
(page 305).

The table below shows the possible formats for the directives. Every directive uses one of these formats.

320 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 321

Table 18–1 Formats of Directives in the hsa_code Section

Name Description
BrigDirectiveArgBlock Start and end of an arg block. See 18.5.1.2. BrigDirectiveArgBlock (below).
BrigDirectiveComment Comment string. See 18.5.1.3. BrigDirectiveComment (below).
BrigDirectiveControl Assorted finalizer controls. See 18.5.1.4. BrigDirectiveControl (next page).
BrigDirectiveExecutable Describes a kernel, function or signature. See 18.5.1.5. BrigDirectiveExecutable (next

page).
BrigDirectiveExtension Used to enable device-specific extensions. See 18.5.1.6. BrigDirectiveExtension (page

324).
BrigDirectiveFbarrier Used for fbarrier definitions. See 18.5.1.7. BrigDirectiveFbarrier (page 324).
BrigDirectiveLabel Declare a label. See 18.5.1.8. BrigDirectiveLabel (page 325).
BrigDirectiveLoc Source-level line position. See 18.5.1.9. BrigDirectiveLoc (page 325).
BrigDirectiveModule Module name, HSAIL version, and target information. See 18.5.1.10.

BrigDirectiveModule (page 326).
BrigDirectiveNone Special directive that is always ignored. See 18.5.1.11. BrigDirectiveNone (page 326).
BrigDirectivePragma Additional information to control the finalizer and other consumers of HSAIL. See

18.5.1.12. BrigDirectivePragma (page 327).
BrigDirectiveVariable Declares a variable. See 18.5.1.13. BrigDirectiveVariable (page 327).

18.5.1.1 Declarations and Definitions in the Same Module

If the same symbol (variable, kernel, function or fbarrier) is both declared and defined in the same module,
all references to the symbol in the BRIG representation must refer to the definition, even if the definition
comes after the use. If there are multiple declarations and no definitions, then all uses must refer to the first
declaration in lexical order. This avoids a finalizer needing to traverse the entire BRIG module to determine
if there is a definition for a symbol in the module.

18.5.1.2 BrigDirectiveArgBlock

BrigDirectiveArgBlock specifies the start and end of an arg block. See 4.3.6. Arg Block (page 62).

Syntax is:

struct BrigDirectiveArgBlock {
BrigBase base;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_DIRECTIVE_ARG_BLOCK_END or
BRIG_KIND_DIRECTIVE_ARG_BLOCK_START.

18.5.1.3 BrigDirectiveComment

BrigDirectiveComment is a comment string.

Syntax is:

struct BrigDirectiveComment {
BrigBase base;
BrigDataOffsetString32_t name;

};

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_DIRECTIVE_COMMENT.

l BrigDataOffsetString32_t name — Byte offset to the place in the hsa_data section where
the text of the comment (including the //) appears.

18.5.1.4 BrigDirectiveControl

BrigDirectiveControl specifies assorted finalizer controls, such as the maximum number of work-
items in a work-group. For information on placement and scope of control directives, see 13.4. Control
Directives for Low-Level Performance Tuning (page 278).

Syntax is:

struct BrigDirectiveControl {
BrigBase base;
BrigControlDirective16_t control;
uint16_t reserved;
BrigDataOffsetOperandList32_t operands;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_DIRECTIVE_CONTROL.

l BrigControlDirective16_t control — Used to select the type of control, maximum size of
a work-group, number of work-groups per compute unit, or controls on optimization. See 18.3.8.
BrigControlDirective (page 303).

l uint16_t reserved — Must be 0.

l BrigDataOffsetOperandList32_t operands — Byte offset to the place in the hsa_data
section where a variable-sized array of byte offsets to operands in the hsa_operand section. The
operands must either be BRIG_KIND_OPERAND_CONSTANT_BYTES or BRIG_KIND_OPERAND_
WAVESIZE.

18.5.1.5 BrigDirectiveExecutable

BrigDirectiveExecutable describes a kernel, function or signature.

Kernels are arranged in the hsa_code section as (see 4.3.2. Kernel (page 56):

1. BrigDirectiveExecutable with kind of BRIG_KIND_DIRECTIVE_KERNEL

2. Zero or more kernel formal arguments

3. Zero or more kernel code block entries that are scoped to the kernel

4. The next module scope entry

Functions are arranged in the hsa_code section as (see 4.3.3. Function (page 58) and 10.3. Function
Declarations, Function Definitions, and Function Signatures (page 247)):

1. BrigDirectiveExecutable with kind of BRIG_KIND_DIRECTIVE_FUNCTION

2. Zero or more function output formal arguments (currently HSAIL only supports at most one output
formal argument)

3. Zero or more function input formal arguments

322 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 323

4. Zero or more function code block entries that are scoped to the function

5. The next module scope entry

Signatures are arranged in the hsa_code section as (see 10.3.3. Function Signature (page 248)):

1. BrigDirectiveExecutable with kind of BRIG_KIND_DIRECTIVE_SIGNATURE

2. Zero or more signature output formal arguments (currently HSAIL only supports at most one output
formal argument)

3. Zero or more signature input formal arguments

4. The next top-level item

The formal arguments are BrigDirectiveVariable with a segment field of: BRIG_SEGMENT_
KERNARG for kernels; and BRIG_SEGMENT_ARG for functions and signatures. For signatures the name
field of a signature formal argument can be 0 if no formal argument name is specified.

Syntax is:

struct BrigDirectiveExecutable {
BrigBase base;
BrigDataOffsetString32_t name;
uint16_t outArgCount;
uint16_t inArgCount;
BrigCodeOffset32_t firstInArg;
BrigCodeOffset32_t firstCodeBlockEntry;
BrigCodeOffset32_t nextModuleEntry;
BrigExecutableModifier8_t modifier;
BrigLinkage8_t linkage;
uint16_t reserved;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_DIRECTIVE_KERNEL, BRIG_KIND_
DIRECTIVE_FUNCTION or BRIG_KIND_DIRECTIVE_SIGNATURE.

l BrigDataOffsetString32_t name — Byte offset to the place in the hsa_data section giving
the name of the kernel, function or signature.

l uint16_t outArgCount — The number of output parameters from the function or signature.
Must be 0 for kernels.

l uint16_t inArgCount — The number of input formal arguments to the kernel, function or
signature.

l BrigCodeOffset32_t firstInArg — Byte offset to the location in the hsa_code section of
the first input formal argument. If there are no input formal arguments, then this must be the same
value as firstCodeBlockEntry.

l BrigCodeOffset32_t firstCodeBlockEntry — Byte offset to the location in the hsa_
code section of the first entry inside the code block of this kernel or function. If this is a signature,
kernel or function declaration (indicated by modifier with a BRIG_EXECUTABLE_DEFINITION
of zero), or if the kernel or function definition code block has no entries, then this must be the same
value as nextModuleEntry.

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

l BrigCodeOffset32_t nextModuleEntry — Byte offset to the location in the hsa_code
section of the next module scope entry outside this kernel, function or signature. If there are no more
module entries, then this must be the size of the hsa_code section.

l BrigExecutableModifier8_t modifier — Modifier for the kernel, function or signature.
The BRIG_EXECUTABLE_DEFINITION must be 1 for signatures because they are always
definitions; 0 if the kernel or function is a declaration; and 1 if the kernel or function is a definition.
See 18.3.10. BrigExecutableModifierMask (page 304).

l BrigLinkage8_t linkage — Values are specified by the BrigLinkage enumeration. Must be
BRIG_LINKAGE_NONE for signatures; and BRIG_LINKAGE_PROGRAM or BRIG_LINKAGE_
MODULE for kernels or functions depending on the linkage specified. See 18.3.16. BrigLinkage (page
306).

l uint16_t reserved — Must be 0.

18.5.1.6 BrigDirectiveExtension

BrigDirectiveExtension is used to enable a device-specific extension. For more information, see
13.1. extension Directive (page 274).

Syntax is:

struct BrigDirectiveExtension {
BrigBase base;
BrigDataOffsetString32_t name;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_DIRECTIVE_EXTENSION.

l BrigDataOffsetString32_t name — Byte offset to the place in the hsa_data section where
the name of the extension appears.

18.5.1.7 BrigDirectiveFbarrier

BrigDirectiveFbarrier is used for fbarrier declarations and definitions.

Syntax is:

struct BrigDirectiveFbarrier {
BrigBase base;
BrigDataOffsetString32_t name;
BrigVariableModifier8_t modifier;
BrigLinkage8_t linkage;
uint16_t reserved;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_DIRECTIVE_FBARRIER.

l BrigDataOffsetString32_t name — Byte offset to the place in the hsa_data section where
the name of the fbarrier appears.

l BrigVariableModifier8_t modifier — Modifier for the fbarrier. The BRIG_VARIABLE_
DEFINITION must be 0 if a declaration; and 1 if a definition. The values for other bitmask fields
must be 0. See 18.3.37. BrigVariableModifierMask (page 317).

324 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 325

l BrigLinkage8_t linkage — Values are specified by the BrigLinkage enumeration. For
module scope fbarriers must be BRIG_LINKAGE_PROGRAM or BRIG_LINKAGE_MODULE
depending on the linkage specified; and for function scope fbarriers must be BRIG_LINKAGE_
FUNCTION. See 4.6.2. Scope (page 78) and 18.3.16. BrigLinkage (page 306)

l uint16_t reserved — Must be 0.

18.5.1.8 BrigDirectiveLabel

BrigDirectiveLabel declares a label. Label directives cannot be at the module level, they must be
inside the code block of a function or a kernel.

Syntax is:

struct BrigDirectiveLabel {
BrigBase base;
BrigDataOffsetString32_t name;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_DIRECTIVE_LABEL.

l BrigDataOffsetString32_t name — Byte offset to the place in the hsa_data section table
where the name of the label appears.

18.5.1.9 BrigDirectiveLoc

BrigDirectiveLoc specifies the source-level line position. The entries starting at next entry until the
next BrigDirectiveLoc are assumed to correspond to the source location defined by this directive. This
is similar to the .linecpp directive. For more information, see 13.2. loc Directive (page 276).

Syntax is:

struct BrigDirectiveLoc {
BrigBase base;
BrigDataOffsetString32_t filename;
uint32_t line;
uint32_t column;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_DIRECTIVE_LOC.

l BrigDataOffsetString32_t filename — Byte offset to the place in the hsa_data section
where the name of the file appears. If the HSAIL loc directive did not specify a file name then must
reference the same string used in the nearest preceding loc directive within the module that does
specify a file name, or the empty string if there is no such loc directive.

l uint32_t line — The finalizer and other tools should assume that the instruction which follows
this directive corresponds to line. Multiple BrigDirectiveLoc statements can refer to the
same line.

l uint32_t column — The finalizer and other tools should assume that the instruction which
follows this directive corresponds to column. Multiple BrigDirectiveLoc statements can refer
to the same column.

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

18.5.1.10 BrigDirectiveModule

BrigDirectiveModule specifies the module name, HSAIL virtual ISA specification version, and target
information. For more information, see Chapter 14. module Header (page 284).

There must be exactly one BrigDirectiveModule directive in the hsa_code section. It may be
optionally preceded only by BrigDirectiveComment, BrigDirectiveLoc and
BrigDirectivePragma directives.

Syntax is:

struct BrigDirectiveModule {
BrigBase base;
BrigDataOffsetString32_t name;
BrigVersion32_t hsailMajor;
BrigVersion32_t hsailMinor;
BrigProfile8_t profile;
BrigMachineModel8_t machineModel;
BrigRound8_t defaultFloatRound;
uint8_t reserved;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_DIRECTIVE_MODULE.

l BrigDataOffsetString32_t name — Byte offset to the place in the hsa_data section giving
the name of the module.

l BrigVersion32_t hsailMajor — The HSAIL virtual version. When generating BRIG, must be
BRIG_VERSION_HSAIL_MAJOR. When consuming BRIG, must be BRIG_VERSION_HSAIL_
MAJOR to be compatible with this revision of the HSAIL virtual ISA specification. See 18.3.38.
BrigVersion (page 318).

l BrigVersion32_t hsailMinor — The HSAIL virtual version. When generating BRIG, must be
BRIG_VERSION_HSAIL_MINOR. When consuming BRIG, hsailMajor must be BRIG_
VERSION_HSAIL_MAJOR and hsailMinor must be less than or equal to BRIG_VERSION_
HSAIL_MINOR to be compatible with this revision of the HSAIL virtual ISA specification. See 18.3.38.
BrigVersion (page 318).

l BrigProfile8_t profile — The profile. A member of the BrigProfile enumeration. See
18.3.24. BrigProfile (page 311).

l BrigMachineModel8_t machineModel — The machine model. A member of the
BrigMachineModel enumeration. See 18.3.17. BrigMachineModel (page 307).

l BrigRound8_t defaultFloatRound — The default floating-point rounding mode. A member
of the BrigRound enumeration: only BRIG_ROUND_FLOAT_DEFAULT, BRIG_ROUND_FLOAT_
NEAR_EVEN, and BRIG_ROUND_FLOAT_ZERO are allowed. See 18.3.26. BrigRound (page 311).

l uint8_t reserved; — Must be 0.

18.5.1.11 BrigDirectiveNone

The BrigDirectiveNone format is a special format that allows a tool to overwrite long instructions with
short ones, provided the tool sets the remaining words to be a BrigDirectiveNone format.

326 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 327

BrigDirectiveNone can be as small as four bytes. It can also be used to cover any number of 4-bytes
by setting the size field accordingly, in which case any bytes after the BrigDirectiveNone structure
must be set to 0.

Syntax is:

struct BrigDirectiveNone {
BrigBase base;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_NONE (which has the value 0).
base.size must be a multiple of 4. If size is greater than the size of the BrigDirectiveNone
structure (4 bytes), then any extra bytes must be set to 0.

18.5.1.12 BrigDirectivePragma

BrigDirectivePragma allows additional information to be given to control the finalizer and other
consumers of HSAIL. For more information, see 13.3. pragma Directive (page 276).

Syntax is:

struct BrigDirectivePragma {
BrigBase base;
BrigDataOffsetOperandList32_t operands;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_DIRECTIVE_PRAGMA.

l BrigDataOffsetOperandList32_t operands — Byte offset to the place in the hsa_data
section where a variable-sized array of byte offsets to operands in the hsa_operand section. The
byteCount of the array must be exactly (4 * number of operands). The operands must
either be BRIG_KIND_OPERAND_CONSTANT_BYTES, BRIG_KIND_OPERAND_CONSTANT_
OPERAND_LIST, BRIG_KIND_OPERAND_CONSTANT_IMAGE, BRIG_KIND_OPERAND_
CONSTANT_SAMPLER, BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CODE_REF,
BRIG_KIND_OPERAND_STRING, or BRIG_KIND_OPERAND_WAVESIZE.

If any operand is a constant, it must be compatible with the rules in 18.6.1. Constant Operands (page 340).

18.5.1.13 BrigDirectiveVariable

BrigDirectiveVariable is used for variable declarations or definitions.

Syntax is:

struct BrigDirectiveVariable {
BrigBase base;
BrigDataOffsetString32_t name;
BrigOperandOffset32_t init;
BrigType16_t type;
BrigSegment8_t segment;
BrigAlignment8_t align;
BrigUInt64 dim;
BrigVariableModifier8_t modifier;
BrigLinkage8_t linkage;
BrigAllocation8_t allocation;
uint8_t reserved;

};

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_DIRECTIVE_VARIABLE.

l BrigDataOffsetString32_t name — Byte offset into the place in the hsa_data section
where the variable name appears.

l BrigOperandOffset32_t init — An initializer: only allowed for variable definitions in the
global or readonly segment. Must be 0 if there is no initializer. Otherwise, must be the offset in the
hsa_operand section to a constant operand with a kind field of BRIG_KIND_CONSTANT_
BYTES, BRIG_KIND_CONSTANT_OPERAND_LIST, BRIG_KIND_OPERAND_CONSTANT_IMAGE,
or BRIG_KIND_OPERAND_CONSTANT_SAMPLER.

The byte size of the constant must match the byte size of the variable.

The constant must be compatible with the type of the variable specified by the type field according to
the rules in 18.6.1. Constant Operands (page 340).

l BrigType 16_t type — The BRIG type of the variable. If the variable is an array then must be an
array type. BRIG_TYPE_B1 is not allowed.

l BrigSegment8_t segment — Segment that will hold the variable. A member of the
BrigSegment enumeration. See 18.3.34. BrigSegment (page 314).

l BrigAlignment8_t align — The required variable alignment in bytes. If the directive does not
specify the align type qualifier, then must be set to the value that corresponds to the natural
alignment for type. See 18.3.2. BrigAlignment (page 301).

l BrigUInt64 dim — The array dimension size dim. See 18.3.36. BrigUint64 (page 317).

The variable is an array if the type field is an array type.

If the variable is not an array, then dim must be 0. If the variable is an array with a size, then dim
must be the number of elements in the array which is not allowed to be 0. If the variable is an array
without a size, but with an initializer, then dim must be set to the number of elements specified by the
size of the initializer. Otherwise, the array variable must be the last argument of a function (see 10.4.
Variadic Functions (page 248)) or a declaration with no size specified, and dim must be set to 0.

l BrigVariableModifier8_t modifier — Modifier for the variable. See 18.3.37.
BrigVariableModifierMask (page 317).

l BrigLinkage8_t linkage — Values are specified by the BrigLinkage enumeration. For
module scope variables must be BRIG_LINKAGE_PROGRAM or BRIG_LINKAGE_MODULE
depending on the linkage specified; for function scope variables must be BRIG_LINKAGE_
FUNCTION; for argument scope variables must be BRIG_LINKAGE_ARG; and for signature scope
variables must be BRIG_LINKAGE_NONE. See 4.6.2. Scope (page 78) and 18.3.16. BrigLinkage
(page 306).

l BrigAllocation8_t allocation — Values are specified by the BrigAllocation
enumeration. For global segment variable must be BRIG_ALLOCATION_PROGRAM or BRIG_
ALLOCATION_AGENT depending on the allocation specified; for readonly segment variable must be
BRIG_ALLOCATION_AGENT; otherwise must be BRIG_ALLOCATION_AUTOMATIC. See 18.3.3.
BrigAllocation (page 301).

l uint8_t reserved — Must be 0.

328 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 329

18.5.2 Instruction Entries

BRIG instructions corresponding to HSAIL instructions. They can only appear in the code block of kernels and
functions. The finalizer uses these to generate executable machine code for kernels and indirect functions.

Every BrigInst* must start with a BrigInstBase. See 18.5.2.1. BrigInstBase (below).

The table below shows the possible formats for the instructions. Every instruction uses one of these
formats.

Table 18–2 Formats of Instructions in the hsa_code Section

Name Description
BrigInstBase Every other BrigInst* entry must start with this structure. See 18.5.2.1. BrigInstBase

(below).
BrigInstAddr Address instructions. See 18.5.2.2. BrigInstAddr (next page).
BrigInstAtomic Atomic instructions. See 18.5.2.3. BrigInstAtomic (next page).
BrigInstBasic Used for all instructions that require no extra modifier information. See 18.5.2.4.

BrigInstBasic (page 331).
BrigInstBr Branch, call, barrier and fbarrier instructions. See 18.5.2.5. BrigInstBr (page 331).
BrigInstCmp Compare instruction. See 18.5.2.6. BrigInstCmp (page 332).
BrigInstCvt Conversion instruction. See 18.5.2.7. BrigInstCvt (page 332).
BrigInstImage Image-related instructions. See 18.5.2.8. BrigInstImage (page 333).
BrigInstLane Cross lane instructions. See 18.5.2.9. BrigInstLane (page 333).
BrigInstMem Load and store memory instructions. See 18.5.2.10. BrigInstMem (page 334).
BrigInstMemFence Memory fence instruction. See 18.5.2.11. BrigInstMemFence (page 335).
BrigInstMod Instructions with a single modifier, such as a rounding mode. See 18.5.2.12. BrigInstMod

(page 335).
BrigInstQueryImage Image query instructions. See 18.5.2.13. BrigInstQueryImage (page 336).
BrigInstQuerySampler Sampler query instruction. See 18.5.2.14. BrigInstQuerySampler (page 336).
BrigInstQueue User Mode Queue instructions. See 18.5.2.15. BrigInstQueue (page 337).
BrigInstSeg Instructions with memory segments. See 18.5.2.16. BrigInstSeg (page 337).
BrigInstSegCvt Instructions which convert between segment and flat addresses. See 18.5.2.17.

BrigInstSegCvt (page 338).
BrigInstSignal Signal instructions. See 18.5.2.18. BrigInstSignal (page 338).
BrigInstSourceType Instructions that have different types for their destination and source operands. See

18.5.2.19. BrigInstSourceType (page 338).

18.5.2.1 BrigInstBase

Every other BrigInst* must start with BrigInstBase which in turn starts with BrigBase.

Syntax is:

struct BrigInstBase {
BrigBase base;
BrigOpcode16_t opcode;
BrigType16_t type;
BrigDataOffsetOperandList32_t operands;

};

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Fields are:

l BrigBase base — The base.kind field must be in the right-open interval [BRIG_KIND_INST_
BEGIN, BRIG_KIND_INST_END). See 18.3.15. BrigKind (page 305).

l BrigOpcode16_t opcode — Opcode associated with the instruction.

l BrigType16_t type — Data type of the destination of the instruction. If the instruction does not
use a structure that provides source operand types (for example, a sourceType field), this can also
be the type of the source operands. If an instruction does not have any typed operands (for example,
call, ret, and br), then the value BRIG_TYPE_NONE must be used.

l BrigDataOffsetOperandList32_t operands — Byte offset to the place in the hsa_data
section where a variable-sized array of byte offsets to operands in the hsa_operand section. The
byteCount of the array must be exactly (4 * number of operands). Any destination
operand is first, followed by any source operands.

If any operand is a constant, it must be compatible with the rules in 18.6.1. Constant Operands (page 340).
The operand kinds allowed for each opcode value are defined in 18.7. BRIG Syntax for Instructions (page
348).

18.5.2.2 BrigInstAddr

The BrigInstAddr format is used for address instructions.

Syntax is:

struct BrigInstAddr {
BrigInstBase base;
BrigSegment8_t segment;
uint8_t reserved[3];

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_ADDR. base.type
must be the data type of the destination and source of the instruction.

l BrigSegment8_t segment — Segment. A member of the BrigSegment enumeration. If the
instruction does not specify a segment, this field must be set to BRIG_SEGMENT_FLAT. See
18.3.34. BrigSegment (page 314).

l uint8_t reserved[3] — Must be 0.

18.5.2.3 BrigInstAtomic

The BrigInstAtomic format is used for atomic and atomic no return instructions.

Syntax is:

struct BrigInstAtomic {
BrigInstBase base;
BrigSegment8_t segment;
BrigMemoryOrder8_t memoryOrder;
BrigMemoryScope8_t memoryScope;
BrigAtomicOperation8_t atomicOperation;
uint8_t equivClass;
uint8_t reserved[3];

};

330 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 331

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_ATOMIC.
base.opcode must be BRIG_OPCODE_ATOMIC or BRIG_OPCODE_ATOMICNORET.
base.type must be the data type of the destination and source of the atomic instruction.

l BrigSegment8_t segment — Segment. A member of the BrigSegment enumeration. If the
instruction does not specify a segment, this field must be set to BRIG_SEGMENT_FLAT. Otherwise
must be BRIG_SEGMENT_GLOBAL or BRIG_SEGMENT_GROUP. See 18.3.34. BrigSegment (page
314).

l BrigMemoryOrder8_t memoryOrder — Memory order of the atomic instruction. See 18.3.19.
BrigMemoryOrder (page 307).

l BrigMemoryScope8_t memoryScope — Memory scope of the atomic instruction. If segment
is BRIG_SEGMENT_GLOBAL or BRIG_SEGMENT_FLAT then must be BRIG_MEMORY_SCOPE_
WAVEFRONT, BRIG_MEMORY_SCOPE_WORKGROUP, BRIG_MEMORY_SCOPE_AGENT, or BRIG_
MEMORY_SCOPE_SYSTEM. If segment is BRIG_SEGMENT_GROUP then must be BRIG_MEMORY_
SCOPE_WAVEFRONT or BRIG_MEMORY_SCOPE_WORKGROUP. See 18.3.20. BrigMemoryScope
(page 307).

l BrigAtomicOperation8_t atomicOperation — The atomic instruction such as add or or.
The wait atomic instructions are not allowed. See 18.3.5. BrigAtomicOperation (page 302).

l uint8_t equivClass — Memory equivalence class. If no equivalence class is explicitly given,
then the value must be set to 0, which is general memory that can interact with all other equivalence
classes. See 6.1.4. Equivalence Classes (page 168).

l uint8_t reserved[3] — Must be 0.

18.5.2.4 BrigInstBasic

The BrigInstBasic format is used for all instructions that require no extra modifier information.

Syntax is:

struct BrigInstBasic {
BrigInstBase base;

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_BASIC. base.type
must be the data type of the destination and source of the instruction.

18.5.2.5 BrigInstBr

The BrigInstBr format is used for the branch, call, barrier and fbarrier instructions.

Syntax is:

struct BrigInstBr {
BrigInstBase base;
BrigWidth8_t width;
uint8_t reserved[3];

};

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_BR. base.opcode
must be BRIG_OPCODE_BR, BRIG_OPCODE_CBR, BRIG_OPCODE_SBR, BRIG_OPCODE_CALL,
BRIG_OPCODE_SCALL, BRIG_OPCODE_ICALL, BRIG_OPCODE_BARRIER, BRIG_OPCODE_
WAVEBARRIER, BRIG_OPCODE_ARRIVEFBAR, BRIG_OPCODE_JOINFBAR, BRIG_OPCODE_
LEAVEFBAR or BRIG_OPCODE_WAITFBAR. base.type must be the source operand data type,
or BRIG_TYPE_NONE if the instruction has no typed operands.

l BrigWidth8_t width — The width modifier. If the instruction does not support the width
modifier, then this must be BRIG_WIDTH_ALL for the direct branch and direct call instructions, and
BRIG_WIDTH_WAVESIZE for the wavebarrier instruction. If the instruction supports the width
modifier but does not specify it, then this must be the default value defined by the instruction: for
indirect branch and indirect call instructions, it is BRIG_WIDTH_1; for barrier instructions, it is
BRIG_WIDTH_ALL; and for the fbarrier instructions, it is BRIG_WIDTH_WAVESIZE. Otherwise,
this must be the value from BrigWidth that corresponds to the specified width modifier. See
18.3.39. BrigWidth (page 318).

l uint8_t reserved[3] — Must be 0.

18.5.2.6 BrigInstCmp

The BrigInstCmp format is used for compare instructions. The compare instruction needs a special
format because it has a comparison operator and a second type.

Syntax is:

struct BrigInstCmp {
BrigInstBase base;
BrigType16_t sourceType;
BrigAluModifier8_t modifier;
BrigCompareOperation8_t compare;
BrigPack8_t pack;
uint8_t reserved[3];

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_CMP. base.opcode
must be BRIG_OPCODE_CMP. base.type must be the data type of the destination of the compare
instruction: for packed compares, must be u with the same length as sourceType.

l BrigType16_t sourceType — Type of the sources.

l BrigAluModifier8_t modifier — The modifier flags for this instruction. See 18.3.4.
BrigAluModifierMask (page 301).

l BrigCompareOperation8_t compare — The specific comparison (greater than, less than,
and so forth).

l BrigPack8_t pack — Packing control. See 18.3.23. BrigPack (page 311).

l uint8_t reserved[3] — Must be 0.

18.5.2.7 BrigInstCvt

The BrigInstCvt format is used for conversion instructions.

332 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 333

Syntax is:

struct BrigInstCvt {
BrigInstBase base;
BrigType16_t sourceType;
BrigAluModifier8_t modifier;
BrigRound8_t round;

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_CVT. base.opcode
must be BRIG_OPCODE_CVT. base.type must be the data type of the destination of the
conversion instruction.

l BrigType16_t sourceType — Type of the sources.

l BrigAluModifier8_t modifier — The modifier flags for this instruction. See 18.3.4.
BrigAluModifierMask (page 301).

l BrigRound8_t round — Rounding mode. See 18.3.26. BrigRound (page 311).

18.5.2.8 BrigInstImage

The BrigInstImage format is used for the image instructions.

Syntax is:

struct BrigInstImage {
BrigInstBase base;
BrigType16_t imageType;
BrigType16_t coordType;
BrigImageGeometry8_t geometry;
uint8_t equivClass;
uint16_t reserved;

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_IMAGE. base.type
must be the data type of the destination of the image instruction.

l BrigType16_t imageType — Type of the image. Must be BRIG_TYPE_ROIMG, BRIG_
TYPE_WOIMG or BRIG_TYPE_RWIMG.

l BrigType16_t coordType — Type of the coordinates.

l BrigImageGeometry8_t geometry — Image geometry. See 18.3.13. BrigImageGeometry
(page 305).

l uint8_t equivClass — Memory equivalence class. If no equivalence class is explicitly given,
then the value must be set to 0, which is general memory that can interact with all other equivalence
classes. See 6.1.4. Equivalence Classes (page 168).

l uint16_t reserved — Must be 0.

18.5.2.9 BrigInstLane

The BrigInstLane format is used for cross-lane instructions.

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Syntax is:

struct BrigInstLane {
BrigInstBase base;
BrigType16_t sourceType;
BrigWidth8_t width;
uint8_t reserved;

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_LANE. base.type
must be the data type of the destination of the cross-lane instruction.

l BrigType16_t sourceType — Type of the source. If the instruction does not have a source type
modifier then must be BRIG_TYPE_NONE.

l BrigWidth8_t width — The width modifier. If the instruction does not specify the width
modifier, then this must be BRIG_WIDTH_1 (the default for the cross-lane instructions). Otherwise,
this must be the value from BrigWidth that corresponds to the specified width modifier. See
18.3.39. BrigWidth (page 318).

l uint16_t reserved — Must be 0.

18.5.2.10 BrigInstMem

The BrigInstMem format is used for memory instructions.

Syntax is:

struct BrigInstMem {
BrigInstBase base;
BrigSegment8_t segment;
BrigAlignment8_t align;
uint8_t equivClass;
BrigWidth8_t width;
BrigMemoryModifier8_t modifier;
uint8_t reserved[3];

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_MEM. base.type
must be the data type of the destination and source of the memory instruction.

l BrigSegment8_t segment — Segment. A member of the BrigSegment enumeration. If the
instruction does not support the segment modifier, then this must be BRIG_SEGMENT_NONE. If the
instruction supports the segment modifier but does not specify it, then this must be BRIG_
SEGMENT_FLAT. See 18.3.34. BrigSegment (page 314).

l BrigAlignment8_t align — The align modifier. If the instruction does not specify the align
modifier, then this must be BRIG_ALIGNMENT_1 (the default for memory instructions). Otherwise,
this must be the value from BrigAlignment that corresponds to the specified align modifier. See
18.3.2. BrigAlignment (page 301).

l uint8_t equivClass — Memory equivalence class. If no equivalence class is explicitly given,
then the value must be set to 0, which is general memory that can interact with all other equivalence
classes. See 6.1.4. Equivalence Classes (page 168).

334 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 335

l BrigWidth8_t width — The width modifier. If the instruction does not support the width
modifier, then this must be BRIG_WIDTH_NONE. If the instruction supports the width modifier but
does not specify it, then this must be BRIG_WIDTH_1 (the default for memory instructions).
Otherwise, this must be the value from BrigWidth that corresponds to the specified width
modifier. See 18.3.39. BrigWidth (page 318).

l BrigMemoryModifier8_t modifier — Memory modifier flags of the instruction. See 18.3.18.
BrigMemoryModifierMask (page 307).

l uint8_t reserved[3] — Must be 0.

18.5.2.11 BrigInstMemFence

The BrigInstMemFence format is used for the memfence instruction.

Syntax is:

struct BrigInstMemFence {
BrigInstBase base;
BrigMemoryOrder8_t memoryOrder;
BrigMemoryScope8_t globalSegmentMemoryScope;
BrigMemoryScope8_t groupSegmentMemoryScope;
BrigMemoryScope8_t imageSegmentMemoryScope;

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_MEMFENCE.
base.opcode must be BRIG_OPCODE_MEMFENCE. base.type must be BRIG_TYPE_NONE as
a memory fence instruction has no destination operand.

l BrigMemoryOrder8_t memoryOrder — Memory order of the memory fence instruction. Must
be BRIG_MEMORY_ORDER_SC_ACQUIRE, BRIG_MEMORY_ORDER_SC_RELEASE, or BRIG_
MEMORY_ORDER_SC_ACQUIRE_RELEASE. See 18.3.19. BrigMemoryOrder (page 307).

l BrigMemoryScope8_t globalSegmentMemoryScope — Memory scope for the global
segment of the memory fence instruction. Must be BRIG_MEMORY_SCOPE_WAVEFRONT, BRIG_
MEMORY_SCOPE_WORKGROUP, BRIG_MEMORY_SCOPE_AGENT, or BRIG_MEMORY_SCOPE_
SYSTEM. See 18.3.20. BrigMemoryScope (page 307).

l BrigMemoryScope8_t groupSegmentMemoryScope — Memory scope for the group
segment of the memory fence instruction. Must be be the same value as
globalSegmentMemoryScope as the memory orders currently supported by memfence
synchronize with both the group and global segment. See 18.3.20. BrigMemoryScope (page 307).

l BrigMemoryScope8_t imageSegmentMemoryScope — Memory scope for the image
segment of the memory fence instruction. The image segment is not one of the regular segments,
but is implicitly used by the image instructions to access image data. Must be BRIG_MEMORY_
SCOPE_NONE as memfence does not currently support synchronizing with the image segment. See
18.3.20. BrigMemoryScope (page 307).

18.5.2.12 BrigInstMod

The BrigInstMod format is used for ALU instructions with a modifier.

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Syntax is:

struct BrigInstMod {
BrigInstBase base;
BrigAluModifier8_t modifier;
BrigPack8_t pack;
BrigRound8_t round;
uint8_t reserved;

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_MOD. base.type
must be the data type of the destination of the instruction.

l BrigAluModifier8_t modifier — The modifier flags for this instruction. See 18.3.4.
BrigAluModifierMask (page 301).

l BrigRound8_t round — Rounding mode. See 18.3.26. BrigRound (page 311).

l BrigPack8_t pack — Packing control. If the instruction does not have a packing modifier, this
must be set to BRIG_PACK_NONE. See 18.3.23. BrigPack (page 311).

l uint8_t reserved — Must be 0.

18.5.2.13 BrigInstQueryImage

The BrigInstQueryImage format is used for the queryimage instruction.

Syntax is:

struct BrigInstQueryImage {
BrigInstBase base;
BrigType16_t imageType;
BrigImageGeometry8_t geometry;
BrigImageQuery8_t query;

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_QUERY_IMAGE.
base.type must be the data type of the destination of the query instruction.

l BrigType16_t imageType — Type of the image. Must be BRIG_TYPE_ROIMG, BRIG_TYPE_
WOIMG, or BRIG_TYPE_RWIMG.

l BrigImageGeometry8_t geometry — Image geometry. See 18.3.13. BrigImageGeometry
(page 305).

l BrigImageQuery8_t query — Image property being queried. See 18.3.14. BrigImageQuery
(page 305).

18.5.2.14 BrigInstQuerySampler

The BrigInstQuerySampler format is used for the querysampler instruction.

Syntax is:

struct BrigInstQuerySampler {
BrigInstBase base;
BrigSamplerQuery8_t query;
uint8_t reserved[3];

};

336 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 337

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_QUERY_SAMPLER.
base.type must be the data type of the destination of the sampler instruction.

l BrigSamplerQuery8_t query — Sampler property being queried. See 18.3.30.
BrigSamplerQuery (page 313).

l uint8_t reserved[3] — Must be 0.

18.5.2.15 BrigInstQueue

The BrigInstQueue format is used for User Mode Queue instructions.

Syntax is:

struct BrigInstQueue {
BrigInstBase base;
BrigSegment8_t segment;
BrigMemoryOrder8_t memoryOrder;
uint16_t reserved;

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_QUEUE. base.type
must be the data type of the destination of the User Mode Queue instruction.

l BrigSegment8_t segment — Segment. A member of the BrigSegment enumeration. If the
instruction does not specify a segment, this field must be set to BRIG_SEGMENT_FLAT. See
18.3.34. BrigSegment (page 314).

l BrigMemoryOrder8_t memoryOrder — Memory order of the User Mode Queue instruction.
See 18.3.19. BrigMemoryOrder (page 307).

l uint16_t reserved — Must be 0.

18.5.2.16 BrigInstSeg

The BrigInstSeg format is used for instructions with memory segments.

Syntax is:

struct BrigInstSeg {
BrigInstBase base;
BrigSegment8_t segment;
uint8_t reserved[3];

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_SEG. base.type
must be the data type of the destination of the instruction.

l BrigSegment8_t segment — Segment. A member of the BrigSegment enumeration. If the
instruction does not specify a segment, this field must be set to BRIG_SEGMENT_FLAT. See
18.3.34. BrigSegment (page 314).

l uint8_t reserved[3] — Must be 0.

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

Chapter 18. BRIG: HSAILBinary Format 18.5 hsa_code Section

18.5.2.17 BrigInstSegCvt

The BrigInstSegCvt format is used for instructions which convert between segment and flat addresses.

Syntax is:

struct BrigInstSegCvt {
BrigInstBase base;
BrigType16_t sourceType;
BrigSegment8_t segment;
BrigSegCvtModifier8_t modifier;

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_SEG_CVT.
base.type must be the data type of the destination of the convert instruction.

l BrigType16_t sourceType — Type of the source.

l BrigSegment8_t segment — Segment. A member of the BrigSegment enumeration. See
18.3.34. BrigSegment (page 314).

l BrigSegCvtModifier8_t modifier — Segment conversion modifier flags of the instruction.
See 18.3.33. BrigSegCvtModifierMask (page 314).

18.5.2.18 BrigInstSignal

The BrigInstSignal format is used for signal instructions.

Syntax is:

struct BrigInstSignal {
BrigInstBase base;
BrigType16_t signalType;
BrigMemoryOrder8_t memoryOrder;
BrigAtomicOperation8_t signalOperation;

};

Fields are:

l uint16_t kind — base.base.kind must be BRIG_KIND_INST_SIGNAL. base.opcode
must be BRIG_OPCODE_SIGNAL or BRIG_OPCODE_SIGNALNORET. base.type must be the
data type of the destination and source of the signal instruction.

l BrigType16_t signalType — Type of the signal. Must be BRIG_TYPE_SIG32 or BRIG_
TYPE_SIG64.

l BrigMemoryOrder8_t memoryOrder — Memory order of the signal instruction. See 18.3.19.
BrigMemoryOrder (page 307).

l BrigAtomicOperation8_t signalOperation — The signal instruction such as add or or.
See 18.3.5. BrigAtomicOperation (page 302).

18.5.2.19 BrigInstSourceType

The BrigInstSourceType format is used for instructions that have different types for their destination
and source operands.

338 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 339

Syntax is:

struct BrigInstSourceType {
BrigInstBase base;
BrigType16_t sourceType;
uint16_t reserved;

};

Fields are:

l BrigInstBase base — base.base.kind must be BRIG_KIND_INST_SOURCE_TYPE.
base.type must be the data type of the destination of the instruction.

l BrigType16_t sourceType — Type of the source.

l uint16_t reserved — Must be 0.

18.6 hsa_operand Section
The hsa_operand section contains the operands of the directives and instructions of the BRIG module.

The hsa_operand section must start with a BrigSectionHeader entry. The name of the section must
be hsa_operand. See 18.3.32. BrigSectionHeader (page 313).

All operand entries (BrigOperand*) in the hsa_operand section must start with a BrigBase
structure. The kind field of the BrigBase structure must be in the right-open interval [BRIG_KIND_
OPERAND_BEGIN, BRIG_KIND_OPERAND_END). See 18.3.15. BrigKind (page 305).

To reduce the size of the hsa_operand section it is allowed, but not required, to reference an already
created BrigOperand* entry, rather than create duplicate BrigOperand* entries.

The table below shows the possible formats for the operands. Every operand uses one of these formats.

Table 18–3 Formats of Operands in the hsa_operand Section

Name Description
BrigOperandAddress Used for address expressions. See 18.6.2. BrigOperandAddress (page 341).
BrigOperandAlign Used for aligning aggregate data constants. See 18.6.3. BrigOperandAlign

(page 341).
BrigOperandCodeList List of references to entries in the hsa_code section. See 18.6.4.

BrigOperandCodeList (page 342).
BrigOperandCodeRef A reference to an entry in the hsa_code section. See 18.6.5.

BrigOperandCodeRef (page 342).
BrigOperandConstantBytes Declares a constant value as an array of bytes. See 18.6.6.

BrigOperandConstantBytes (page 343).
BrigOperandConstantImage Declares the properties of an image referenced by an image handle constant.

See 18.6.7. BrigOperandConstantImage (page 344).
BrigOperandConstantOperandList Declares a constant as a list of operands. See 18.6.8.

BrigOperandConstantOperandList (page 345).
BrigOperandConstantSampler Declares the properties of a sampler referenced by a sample handle constant.

18.6.9. BrigOperandConstantSampler (page 346).
BrigOperandOperandList List of references to entries in the hsa_operand section. See 18.6.10.

BrigOperandOperandList (page 346).
BrigOperandRegister A register (c, s, d, or q). See 18.6.11. BrigOperandRegister (page 347).

Chapter 18. BRIG: HSAILBinary Format 18.6 hsa_operand Section

Chapter 18. BRIG: HSAILBinary Format 18.6 hsa_operand Section

Name Description
BrigOperandString A textual string. See 18.6.12. BrigOperandString (page 347).
BrigOperandWavesize The wavesize operand. See 18.6.13. BrigOperandWavesize (page 347).

18.6.1 Constant Operands

Constant values are represented by operands with a kind field of BRIG_KIND_OPERAND_CONSTANT_
BYTES, BRIG_KIND_OPERAND_CONSTANT_IMAGE, BRIG_KIND_OPERAND_CONSTANT_OPERAND_
LIST, or BRIG_KIND_OPERAND_CONSTANT_SAMPLER. The type of the constant is given by the type
field of the BrigOperandConstant*.

A constant operand may be used as:

l The value of a variable initializer: the expected data type is given by the type field of the
BrigDirectiveVariable.

l The operand of an instruction: the expected data type is the type of the corresponding instruction
operand which depends on the actual instruction which is given by the base.opcode field of the
BrigInst*.

l The operand of a directive: the expected data type is the type of the corresponding directive operand
which depends on the actual directive which is given by the base.kind field of the
BrigDirective*.

l An element of an array typed constant: the expected data type is the array element type of the array
typed constant.

l An element of an aggregate constant: the expected type is the type of the constant itself which is
always a typed constant.

The data type of the constant must correspond to the expected data type as described below:

l If the expected type is b1, the constant type must be u8 and have a value of 0 or 1.

l If the expected type is b128, the constant type must be u8x16.

l If the expected type is a bit type, other than b1 or b128, the constant type must be an unsigned
integer type of the same byte size as the expected type.

l If the expected type is a bit type array (note that a b1 array type is not allowed), the constant must be
an aggregate constant represented as a BrigOperandConstantOperandList with a type
field of BRIG_TYPE_NONE. The byte size of the aggregate constant value must be the same byte
size as expected type array.

l In all other cases, the constant type must be the same as the expected type. If the constant type is an
array type, then the byte size of the constant must be the same as the byte size of the expected type
array. If the constant type is a signal or signal array type, then the value must be 0.

It is allowed to canonicalize a series of adjacent aggregate constant elements into an array typed constant if
it denotes the same byte value. This allows a series of constants to be collapsed into a single
BrigOperandConstantBytes. However, such collapsing is only valid if endianness properties are
preserved which are impacted by the data type byte size and by whether the type is a packed type.

340 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 341

It is allowed to canonicalize an aggregate constant element that is an array typed constant into a list of
aggregate elements for each element of the array typed constant. This allows an aggregate element that is
an array of image or sampler typed constants to become a list of the image or sampler constants. This
avoids the need for an BrigOperandConstantOperandList to denote the array.

These canonicalizations can be combined to create more compact BRIG that still preserves the same value
of the constant independent of endianness. This can be important for large byte size constants to improve
the performance of processing the BRIG.

18.6.2 BrigOperandAddress

BrigOperandAddress is used for address expressions. See 4.18. Address Expressions (page 106).

Syntax is:

struct BrigOperandAddress {
BrigBase base;
BrigCodeOffset32_t symbol;
BrigOperandOffset32_t reg;
BrigUInt64 offset;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_OPERAND_ADDRESS.

l BrigCodeOffset32_t symbol — Byte offset in hsa_code section pointing to the symbol
definition or declaration for the name. See 18.5.1.1. Declarations and Definitions in the Same Module
(page 321). If the address expression has no symbol name then must be 0.

l BrigOperandOffset32_t reg — Byte offset in the hsa_operand section to a BRIG_KIND_
OPERAND_REGISTER operand. If the address expression has no register then must be 0.

l BrigUInt64 offset — Byte offset to add to the address. See 18.3.36. BrigUint64 (page 317). If
the address expression has no offset then offset must be 0. If the type of the address expression is
u32, the hi field of the BrigUInt64 must be 0. The finalizer will order the bytes of the offset value
according to the byte endianness of the HSA platform for which code is being generated.

18.6.3 BrigOperandAlign

BrigOperandAlign is used for aligning aggregate data constants. See 4.8.4. Aggregate Constants (page
91).

Syntax is:

struct BrigOperandAlign {
BrigBase base;
BrigAlignment8_t align;
uint8_t reserved[3];

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_OPERAND_ALIGN.

l BrigAlignment8_t align — The required alignment in bytes for the next aggregate constant
element. Causes zero padding between aggregate constant elements, or zero fill if the last

Chapter 18. BRIG: HSAILBinary Format 18.6 hsa_operand Section

Chapter 18. BRIG: HSAILBinary Format 18.6 hsa_operand Section

aggregate constant element. See 18.3.2. BrigAlignment (page 301).

l uint8_t reserved[3] — Must be 0.

18.6.4 BrigOperandCodeList

BrigOperandCodeList is used for a list of references to entries in the hsa_code section

Syntax is:

struct BrigOperandCodeList {
BrigBase base;
BrigDataOffsetCodeList32_t elements;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_OPERAND_CODE_LIST.

l BrigDataOffsetCodeList32_t elements — Byte offset to the place in the hsa_data
section where a variable-sized array of byte offsets to entries in the hsa_code section is available.
The byteCount of the array must be exactly (4 * number of elements).

o When used as a function actual argument list, each element must reference BRIG_KIND_
DIRECTIVE_VARIABLE with BRIG_SEGMENT_ARG segment.

o When used as a function list, each element must reference a BRIG_KIND_DIRECTIVE_
FUNCTION or BRIG_KIND_DIRECTIVE_INDIRECT_FUNCTION directive. See 18.5.1.1.
Declarations and Definitions in the Same Module (page 321).

o When used as a label list, each element must reference a BRIG_KIND_DIRECTIVE_
LABEL directive in the same function scope.

18.6.5 BrigOperandCodeRef

BrigOperandCodeRef is used to reference an entry in the hsa_code section.

Syntax is:

struct BrigOperandCodeRef {
BrigBase base;
BrigCodeOffset32_t ref;

};

342 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 343

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_OPERAND_CODE_REF

l BrigCodeOffset32_t ref — Byte offset to the place in the hsa_code section.

o When used to reference a kernel, must reference BRIG_KIND_DIRECTIVE_KERNEL
directive.

o When used to reference a function, must reference BRIG_KIND_DIRECTIVE_FUNCTION
or BRIG_KIND_DIRECTIVE_INDIRECT_FUNCTION directive.

o When used to reference a signature, must reference BRIG_KIND_DIRECTIVE_
SIGNATURE directive.

o When used to reference a variable, must reference BRIG_KIND_DIRECTIVE_VARIABLE
directive.

o When used to reference a fbarrier, must reference BRIG_KIND_DIRECTIVE_FBARRIER
directive.

o When used to reference a label, must reference BRIG_KIND_DIRECTIVE_LABEL directive
in the same function scope.

See 18.5.1.1. Declarations and Definitions in the Same Module (page 321).

18.6.6 BrigOperandConstantBytes

BrigOperandConstantBytes specifies a constant value as an array of bytes.

Syntax is:

struct BrigOperandConstantBytes {
BrigBase base;
BrigType16_t type;
uint16_t reserved;
BrigDataOffsetString32_t bytes;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_OPERAND_CONSTANT_BYTES.

l BrigType16_t type — Data type of the constant. Must be an integer type, floating-point type,
packed type, signal type, or array of integer type, float type, packed type or signal type. Note, bit
types or array of bit types are not allowed.

l uint16_t reserved — Must be 0.

l BrigDataOffsetString32_t bytes — Byte offset into the place in the hsa_data section
where the bytes of the constant value are available. The byte size is the byteCount of the
BrigData.

This operand is used to represent the value of all integer constants, float constants, integer typed
constants, float typed constants, packed typed constants, signal typed constants, array typed
constants of integer, float, packed and signal. Note that HSAIL has no bit typed constants.

Chapter 18. BRIG: HSAILBinary Format 18.6 hsa_operand Section

Chapter 18. BRIG: HSAILBinary Format 18.6 hsa_operand Section

If type is a non-array type then the element type is type. The byte size must be the size of the
element type. If the element type is an integer type then the constant corresponds to an integer
constant or integer typed constant. If the element type is a float type then the constant corresponds
to a float constant or float typed constant. If the element type is a packed type then the constant
corresponds to a packed typed constant. If the element type is a signal type then the constant
corresponds to a signal typed constant: the bytes must have a value of 0.

If type is an array type then the element type is the array element type of type. The byte size must
be an integral multiple of the element type. The constant corresponds to an array typed constant.
The element type must be an integer, float, packed or signal type. If the element type is a signal type
the bytes must be 0.

The data is stored in the hsa_data section as a stream of consecutive values of the element type,
with each value encoded from least significant to most significant byte (little endian byte format). The
elements of an array typed constant are encoded in the element order. The elements of a packed
typed constant are encoded in the reverse element order. However, when finalized the bytes are
ordered according to the byte endianness of the HSA platform for which code is being generated.
Note that for packed typed constants, both the bytes of the elements and the order of the elements
must be reversed if not finalizing for a little endian byte format HSA platform.

18.6.7 BrigOperandConstantImage

BrigOperandConstantImage specifies the properties of an image referenced by an image handle
constant. For more information, see 7.1.7. Image Creation and Image Handles (page 211).

Syntax is:

struct BrigOperandConstantImage {
BrigBase base;
BrigType16_t type;
BrigImageGeometry8_t geometry;
BrigImageChannelOrder8_t channelOrder;
BrigImageChannelType8_t channelType;
uint8_t reserved[3];
BrigUInt64 width;
BrigUInt64 height;
BrigUInt64 depth;
BrigUInt64 array;

};

Fields are:

l BrigDirectiveKinds16_t kind — base.kind must be BRIG_KIND_OPERAND_
CONSTANT_IMAGE.

l BrigType16_t type — Data type of the constant. Must be BRIG_TYPE_ROIMG, BRIG_TYPE_
WOIMG, or BRIG_TYPE_RWIMG.

l BrigImageGeometry8_t geometry — Geometry for the image. A member of the
BrigImageGeometry enumeration. See 18.3.13. BrigImageGeometry (page 305).

l BrigImageChannelOrder8_t channelOrder — Channel order for the components.
Components of an image can be reordered when values are read from or written to memory. A
member of the BrigImageChannelOrder enumeration. See 18.3.11. BrigImageChannelOrder
(page 304).

344 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 345

l BrigImageChannelType8_t channelType — Channel type for storing images. Images can
be stored and accessed in assorted formats. A member of the BrigImageChannelType
enumeration. See 18.3.12. BrigImageChannelType (page 304).

l uint8_t reserved[3] — Must be 0.

l BrigUInt64 width — The image width. Must be greater than zero for all image geometries.

l BrigUInt64 height — The image height. Must be greater than zero if geometry is BRIG_
GEOMETRY_2D, BRIG_GEOMETRY_3D, BRIG_GEOMETRY_2DA, BRIG_GEOMETRY_2DDEPTH, or
BRIG_GEOMETRY_2DADEPTH; otherwise must be 0.

l BrigUInt64 depth — The image depth. Must be greater than zero if geometry is BRIG_
GEOMETRY_3D; otherwise must be 0.

l BrigUInt64 array — The number of images in the array. Must be greater than zero if geometry
is BRIG_GEOMETRY_1DA, BRIG_GEOMETRY_2DA, or BRIG_GEOMETRY_2DADEPTH; otherwise
must be 0

18.6.8 BrigOperandConstantOperandList

BrigOperandConstantOperandList specifies the data value.

Syntax is:

struct BrigOperandConstantOperandList {
BrigBase base;
BrigType16_t type;
uint16_t reserved;
BrigDataOffsetOperandList32_t elements;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_OPERAND_CONSTANT_OPERAND_LIST.

l BrigType16_t type — Must be an image or sampler array type if an array typed constant, or
BRIG_TYPE_NONE if an aggregate constant.

l uint16_t reserved — Must be 0.

l BrigDataOffsetOperandList32_t elements — Byte offset to the place in the hsa_data
section where a variable-sized array of byte offsets to operands in the hsa_operand section is
available. The byteCount of the array must be exactly (4 * number of operands). The
operands must either be BRIG_KIND_OPERAND_CONSTANT_BYTES, BRIG_KIND_OPERAND_
CONSTANT_IMAGE, BRIG_KIND_OPERAND_CONSTANT_SAMPLER, or BRIG_KIND_OPERAND_
ALIGN.

If the constant is an aggregate constant, then the type field must be BRIG_TYPE_NONE. The
operands must either be BRIG_KIND_OPERAND_CONSTANT_BYTES, BRIG_KIND_OPERAND_
CONSTANT_IMAGE, BRIG_KIND_OPERAND_CONSTANT_SAMPLER, or BRIG_KIND_OPERAND_
ALIGN that correspond to the elements of the aggregate constant. If an element of the aggregate
constant is an image or sampler array typed constant, then the array typed constant elements are
represented directly as elements of the aggregate constant. The byte size of the constant is the sum
of the byte sizes of the operands, accounting for any padding created by any BRIG_KIND_
OPERAND_ALIGN operands.

Chapter 18. BRIG: HSAILBinary Format 18.6 hsa_operand Section

Chapter 18. BRIG: HSAILBinary Format 18.6 hsa_operand Section

If the constant is an array typed constant, then the type field must be an array type with an image
or sampler array element type. The operands must either all be BRIG_KIND_OPERAND_
CONSTANT_IMAGE for an image array type, or all be BRIG_KIND_OPERAND_CONSTANT_
SAMPLER for a sampler array type. The byte size of the constant is the byte size of the array
element type multiplied by the number of operands.

18.6.9 BrigOperandConstantSampler

BrigOperandConstantSampler specifies the properties of a sampler referenced by a sampler handle
constant. For more information, see 7.1.8. Sampler Creation and Sampler Handles (page 214).

Syntax is:

struct BrigOperandConstantSampler {
BrigBase base;
BrigType16_t type;
BrigSamplerCoordNormalization8_t coord;
BrigSamplerFilter8_t filter;
BrigSamplerAddressing8_t addressing;
uint8_t reserved[3];

};

Fields are:

l BrigDirectiveKinds16_t kind — base.kind must be BRIG_KIND_OPERAND_
CONSTANT_SAMPLER.

l BrigType16_t type — Data type of the constant. Must be BRIG_TYPE_SAMP.

l BrigSamplerCoordNormalization8_t coord — The coordinate normalization mode
controls whether the coordinates are normalized or unnormalized. Does not apply to the array index
coordinate of 1DA, 2DA and 2DADEPTH images which always use BRIG_COORD_UNNORMALIZED.
Must be a member of the BrigSamplerCoordNormalization enumeration. See 18.3.28.
BrigSamplerCoordNormalization (page 312).

l BrigSamplerFilter8_t filter — The filter mode used to specify how image elements are
selected. Must be a member of the BrigSamplerFilter enumeration. If coord is BRIG_
COORD_UNNORMALIZED then must be BRIG_FILTER_NEAREST. See 18.3.29. BrigSamplerFilter
(page 313).

l BrigSamplerAddressing8_t addressing — The addressing mode used when coordinates
are out of range of the corresponding image dimension size. Must be a member of the
BrigSamplerAddressing enumeration. If coord is BRIG_COORD_UNNORMALIZED then must
be BRIG_ADDRESSING_UNDEFINED, BRIG_ADDRESSING_CLAMP_TO_EDGE or BRIG_
ADDRESSING_CLAMP_TO_BORDER. Does not apply to the array index coordinate of 1DA, 2DA and
2DADEPTH images which always use BRIG_ADDRESSING_CLAMP_TO_EDGE. See 18.3.27.
BrigSamplerAddressing (page 312).

l uint8_t reserved[3] — Must be 0.

18.6.10 BrigOperandOperandList

BrigOperandOperandList is used for a list of references to entries in the hsa_operand section

Syntax is:

struct BrigOperandOperandList {
BrigBase base;

346 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 347

BrigDataOffsetOperandList32_t elements;
};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_OPERAND_OPERAND_LIST.

l BrigDataOffsetOperandList32_t elements — Byte offset to the place in the hsa_data
section where a variable-sized array of byte offsets to entries in the hsa_operand section. The
byteCount of the array must be exactly (4 * number of elements).

o When used as a destination vector operand, each element must reference a BRIG_KIND_
OPERAND_REGISTER directive.

o When used as a source vector operand, each element must reference a BRIG_KIND_
OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or BRIG_KIND_
OPERAND_WAVESIZE directive.

18.6.11 BrigOperandRegister

BrigOperandRegister is used for a register (c, s, d,or q).

Syntax is:

struct BrigOperandRegister {
BrigBase base;
BrigRegisterKind16_t regKind;
uint16_t regNum;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_OPERAND_REGISTER.

l BrigRegisterKind16_t regKind — The register kind. Must be BRIG_REG_KIND_CONTROL
for c register, BRIG_REG_KIND_SINGLE for s register, BRIG_REG_KIND_DOUBLE for d
register, and BRIG_REG_KIND_QUAD for q register.

l uint16_t regNum — The register number.

18.6.12 BrigOperandString

BrigOperandString is used for a textual string.

Syntax is:

struct BrigOperandString {
BrigBase base;
BrigDataOffsetString32_t string;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_OPERAND_STRING.

l BrigDataOffsetString32_t string — Byte offset to the place in the hsa_data section
where the textual string occurs.

18.6.13 BrigOperandWavesize

BrigOperandWavesize is the wavesize operand, which is a compile-time value equal to the size of a
wavefront.

Chapter 18. BRIG: HSAILBinary Format 18.6 hsa_operand Section

Chapter 18. BRIG: HSAILBinary Format 18.7 BRIG Syntax for Instructions

Syntax is:

struct BrigOperandWavesize {
BrigBase base;

};

Fields are:

l BrigBase base — base.kind must be BRIG_KIND_OPERAND_WAVESIZE.

18.7 BRIG Syntax for Instructions
This section describes the BRIG syntax for instructions.

18.7.1 BRIG Syntax for Arithmetic Instructions

Some instructions support modifiers that have default values. These instructions can either be encoded as
BRIG_KIND_INST_BASIC if all modifiers have default values, or by BRIG_KIND_INST_MOD whether or
not default modifiers are used. Using BRIG_KIND_INST_BASIC only serves to reduce the size of BRIG.

18.7.1.1 BRIG Syntax for Integer Arithmetic Instructions

Table 18–4 BRIG Syntax for Integer Arithmetic Instructions

Opcode Format Operand
0

Operand
1

Operand
2

BRIG_OPCODE_
ABS

BRIG_KIND_INST_BASIC (if only default modifiers are used) or
BRIG_KIND_INST_MOD

dest src

BRIG_OPCODE_
ADD

BRIG_KIND_INST_BASIC (if only default modifiers are used) or
BRIG_KIND_INST_MOD

dest src src

BRIG_OPCODE_
BORROW

BRIG_KIND_INST_BASIC dest src src

BRIG_OPCODE_
CARRY

BRIG_KIND_INST_BASIC dest src src

BRIG_OPCODE_
DIV

BRIG_KIND_INST_BASIC dest src src

BRIG_OPCODE_
MAX

BRIG_KIND_INST_BASIC (if only default modifiers are used) or
BRIG_KIND_INST_MOD

dest src src

BRIG_OPCODE_
MIN

BRIG_KIND_INST_BASIC (if only default modifiers are used) or
BRIG_KIND_INST_MOD

dest src src

BRIG_OPCODE_
MUL

BRIG_KIND_INST_BASIC (if only default modifiers are used) or
BRIG_KIND_INST_MOD

dest src src

BRIG_OPCODE_
MULHI

BRIG_KIND_INST_BASIC (if only default modifiers are used) or
BRIG_KIND_INST_MOD

dest src src

BRIG_OPCODE_
NEG

BRIG_KIND_INST_BASIC (if only default modifiers are used) or
BRIG_KIND_INST_MOD

dest src

BRIG_OPCODE_
REM

BRIG_KIND_INST_BASIC dest src src

BRIG_OPCODE_
SUB

BRIG_KIND_INST_BASIC (if only default modifiers are used) or
BRIG_KIND_INST_MOD

dest src src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

348 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 349

18.7.1.2 BRIG Syntax for Integer Optimization Instruction

Table 18–5 BRIG Syntax for Integer Optimization Instruction

Opcode Format Operand
0

Operand
1

Operand
2

Operand
3

BRIG_
OPCODE_MAD

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src src src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

18.7.1.3 BRIG Syntax for 24-Bit Integer Optimization Instructions

Table 18–6 BRIG Syntax for 24-Bit Integer Optimization Instructions

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3
BRIG_OPCODE_MAD24 BRIG_KIND_INST_BASIC dest src src src

BRIG_OPCODE_MAD24HI BRIG_KIND_INST_BASIC dest src src src

BRIG_OPCODE_MUL24 BRIG_KIND_INST_BASIC dest src src

BRIG_OPCODE_MUL24HI BRIG_KIND_INST_BASIC dest src src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

18.7.1.4 BRIG Syntax for Integer Shift Instructions

Table 18–7 BRIG Syntax for Integer Optimization Instructions

Opcode Format Operand 0 Operand 1 Operand 2
BRIG_OPCODE_SHL BRIG_KIND_INST_BASIC dest src src

BRIG_OPCODE_SHR

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

18.7.1.5 BRIG Syntax for Individual Bit Instructions

Table 18–8 BRIG Syntax for Individual Bit Instructions

Opcode Format Operand 0 Operand 1 Operand 2
BRIG_OPCODE_AND BRIG_KIND_INST_BASIC dest src src

BRIG_OPCODE_NOT BRIG_KIND_INST_BASIC dest src

BRIG_OPCODE_OR BRIG_KIND_INST_BASIC dest src src

BRIG_OPCODE_POPCOUNT BRIG_KIND_INST_SOURCE_TYPE dest src

BRIG_OPCODE_XOR BRIG_KIND_INST_BASIC dest src src

dest: must be BRIG_KIND_OPERAND_REGISTER.

Chapter 18. BRIG: HSAILBinary Format 18.7 BRIG Syntax for Instructions

Chapter 18. BRIG: HSAILBinary Format 18.7 BRIG Syntax for Instructions

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

18.7.1.6 BRIG Syntax for Bit String Instructions

Table 18–9 BRIG Syntax for Bit String Instructions

Opcode Format Oper. 0 Oper. 1 Oper. 2 Oper. 3 Oper. 4
BRIG_OPCODE_BITEXTRACT BRIG_KIND_INST_BASIC dest src src src

BRIG_OPCODE_BITINSERT BRIG_KIND_INST_BASIC dest src src src src

BRIG_OPCODE_BITMASK BRIG_KIND_INST_BASIC dest src src

BRIG_OPCODE_BITREV BRIG_KIND_INST_BASIC dest src

BRIG_OPCODE_BITSELECT BRIG_KIND_INST_BASIC dest src src src

BRIG_OPCODE_FIRSTBIT BRIG_KIND_INST_SOURCE_TYPE dest src

BRIG_OPCODE_LASTBIT BRIG_KIND_INST_SOURCE_TYPE dest src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

18.7.1.7 BRIG Syntax for Copy (Move) Instructions

Table 18–10 BRIG Syntax for Copy (Move) Instructions

Opcode Format Operand 0 Operand 1
BRIG_OPCODE_COMBINE BRIG_KIND_INST_SOURCE_TYPE dest src-vector

BRIG_OPCODE_EXPAND BRIG_KIND_INST_SOURCE_TYPE dest-vector src

BRIG_OPCODE_LDA BRIG_KIND_INST_ADDR dest address

BRIG_OPCODE_MOV BRIG_KIND_INST_BASIC dest src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src-vector: must be BRIG_KIND_OPERAND_OPERAND_LIST that references a list of BRIG_KIND_
OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES or BRIG_KIND_OPERAND_
WAVESIZE operands.

dest-vector: must be BRIG_KIND_OPERAND_OPERAND_LIST that references a list of BRIG_KIND_
OPERAND_REGISTER operands.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

address: must be BRIG_KIND_OPERAND_ADDRESS.

18.7.1.8 BRIG Syntax for Packed Data Instructions

Table 18–11 BRIG Syntax for Packed Data Instructions

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3
BRIG_OPCODE_SHUFFLE BRIG_KIND_INST_BASIC dest src src number

BRIG_OPCODE_UNPACKHI BRIG_KIND_INST_BASIC dest src src

BRIG_OPCODE_UNPACKLO BRIG_KIND_INST_BASIC dest src src

350 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 351

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3
BRIG_OPCODE_PACK BRIG_KIND_INST_SOURCE_TYPE dest src src src

BRIG_OPCODE_UNPACK BRIG_KIND_INST_SOURCE_TYPE dest src src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

number: must be BRIG_KIND_OPERAND_CONSTANT_BYTES.

18.7.1.9 BRIG Syntax for Bit Conditional Move (cmov) Instruction

Table 18–12 BRIG Syntax for Bit Conditional Move (cmov) Instruction

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3
BRIG_OPCODE_CMOV BRIG_KIND_INST_BASIC dest src src src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

18.7.1.10 BRIG Syntax for Floating-Point Arithmetic Instructions

Table 18–13 BRIG Syntax for Floating-Point Arithmetic Instructions

Opcode Format Operand
0

Operand
1

Operand
2

Operand
3

BRIG_
OPCODE_ADD

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src src

BRIG_
OPCODE_CEIL

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src

BRIG_
OPCODE_DIV

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src src

BRIG_
OPCODE_
FLOOR

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src

BRIG_
OPCODE_FMA

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src src src

BRIG_
OPCODE_
FRACT

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src

BRIG_
OPCODE_MAX

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src src

BRIG_
OPCODE_MIN

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src src

BRIG_
OPCODE_MUL

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src src

BRIG_
OPCODE_RINT

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src

Chapter 18. BRIG: HSAILBinary Format 18.7 BRIG Syntax for Instructions

Chapter 18. BRIG: HSAILBinary Format 18.7 BRIG Syntax for Instructions

Opcode Format Operand
0

Operand
1

Operand
2

Operand
3

BRIG_
OPCODE_SQRT

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src

BRIG_
OPCODE_SUB

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src src

BRIG_
OPCODE_
TRUNC

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER or BRIG_KIND_OPERAND_CONSTANT_BYTES.

18.7.1.11 BRIG Syntax for Floating-Point Optimization Instruction

Table 18–14 BRIG Syntax for Floating-Point Optimization Instruction

Opcode Format Operand
0

Operand
1

Operand
2

Operand
3

BRIG_
OPCODE_MAD

BRIG_KIND_INST_BASIC (if only default modifiers are
used) or BRIG_KIND_INST_MOD

dest src src src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER or BRIG_KIND_OPERAND_CONSTANT_BYTES.

18.7.1.12 BRIG Syntax for Floating-Point Bit Instructions

Table 18–15 BRIG Syntax for Floating-Point Classify (class) Instructions

Opcode Format Operand
0

Operand
1

Operand
2

BRIG_OPCODE_
ABS

BRIG_KIND_INST_BASIC (if only default modifiers are used) or
BRIG_KIND_INST_MOD

dest src

BRIG_OPCODE_
CLASS

BRIG_KIND_INST_SOURCE_TYPE dest src cond

BRIG_OPCODE_
COPYSIGN

BRIG_KIND_INST_BASIC (if only default modifiers are used) or
BRIG_KIND_INST_MOD

dest src src

BRIG_OPCODE_
NEG

BRIG_KIND_INST_BASIC (if only default modifiers are used) or
BRIG_KIND_INST_MOD

dest src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER or BRIG_KIND_OPERAND_CONSTANT_BYTES.

cond: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

352 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 353

18.7.1.13 BRIG Syntax for Native Floating-Point Instructions

Table 18–16 BRIG Syntax for Native Floating-Point Instructions

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3
BRIG_OPCODE_NCOS BRIG_KIND_INST_BASIC dest src

BRIG_OPCODE_NEXP2 dest src

BRIG_OPCODE_NFMA dest src src src

BRIG_OPCODE_NLOG2 dest src

BRIG_OPCODE_NRCP dest src

BRIG_OPCODE_NRSQRT dest src

BRIG_OPCODE_NSIN dest src

BRIG_OPCODE_NSQRT dest src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER or BRIG_KIND_OPERAND_CONSTANT_BYTES.

18.7.1.14 BRIG Syntax for Multimedia Instructions

Table 18–17 BRIG Syntax for Multimedia Instructions

Opcode Format Operand
0

Operand
1

Operand
2

Operand
3

Operand
4

BRIG_OPCODE_
BITALIGN

BRIG_KIND_INST_BASIC dest src src src

BRIG_OPCODE_
BYTEALIGN

BRIG_KIND_INST_BASIC dest src src src

BRIG_OPCODE_LERP BRIG_KIND_INST_BASIC dest src src src

BRIG_OPCODE_PACKCVT BRIG_KIND_INST_SOURCE_
TYPE

dest src src src src

BRIG_OPCODE_
UNPACKCVT

BRIG_KIND_INST_SOURCE_
TYPE

dest src number

BRIG_OPCODE_SAD BRIG_KIND_INST_SOURCE_
TYPE

dest src src src

BRIG_OPCODE_SADHI BRIG_KIND_INST_SOURCE_
TYPE

dest src src src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

number: must be BRIG_KIND_OPERAND_CONSTANT_BYTES with value 0, 1, 2, or 3.

18.7.1.15 BRIG Syntax for Segment Checking (segmentp) Instruction

Table 18–18 BRIG Syntax for Segment Checking (segmentp) Instruction

Opcode Format Operand 0 Operand 1
BRIG_OPCODE_SEGMENTP BRIG_KIND_INST_SEG_CVT dest src

dest: must be BRIG_KIND_OPERAND_REGISTER.

Chapter 18. BRIG: HSAILBinary Format 18.7 BRIG Syntax for Instructions

Chapter 18. BRIG: HSAILBinary Format 18.7 BRIG Syntax for Instructions

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

18.7.1.16 BRIG Syntax for Segment Conversion Instructions

Table 18–19 BRIG Syntax for Segment Conversion Instructions

Opcode Format Operand 0 Operand 1
BRIG_OPCODE_FTOS BRIG_KIND_INST_SEG_CVT dest src

BRIG_OPCODE_STOF

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

18.7.1.17 BRIG Syntax for Compare (cmp) Instruction

Table 18–20 BRIG Syntax for Compare (cmp) Instruction

Opcode Format Operand 0 Operand 1 Operand 2
BRIG_OPCODE_CMP BRIG_KIND_INST_CMP dest src src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

The pack field of BRIG_KIND_INST_CMP should be set to BRIG_PACK_PP for packed source types and
to BRIG_PACK_NONE otherwise.

18.7.1.18 BRIG Syntax for Conversion (cvt) Instruction

Table 18–21 BRIG Syntax for Conversion (cvt) Instruction

Opcode Format Operand 0 Operand 1
BRIG_OPCODE_CVT BRIG_KIND_INST_CVT dest src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

18.7.2 BRIG Syntax for Memory Instructions

Table 18–22 BRIG Syntax for Memory Instructions

Opcode Format Operand 0 Operand
1

Operand
2

Operand
3

BRIG_OPCODE_LD BRIG_KIND_INST_
MEM

reg-or-vector address

BRIG_OPCODE_ST BRIG_KIND_INST_
MEM

reg-or-
vector-or-num

address

BRIG_OPCODE_ATOMIC BRIG_KIND_INST_
ATOMIC

dest address src

354 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 355

Opcode Format Operand 0 Operand
1

Operand
2

Operand
3

BRIG_OPCODE_ATOMIC (for atomic_ld) BRIG_KIND_INST_
ATOMIC

dest address

BRIG_OPCODE_ATOMIC (for atomic_cas) BRIG_KIND_INST_
ATOMIC

dest address src src

BRIG_OPCODE_ATOMICNORET BRIG_KIND_INST_
ATOMIC

address src

BRIG_OPCODE_SIGNAL BRIG_KIND_INST_
SIGNAL

dest signal src

BRIG_OPCODE_SIGNAL (for signal_ld) BRIG_KIND_INST_
SIGNAL

dest signal

BRIG_OPCODE_SIGNAL (for signal_cas and
signal_waittimeout)

BRIG_KIND_INST_
SIGNAL

dest signal src src

BRIG_OPCODE_SIGNALNORET BRIG_KIND_INST_
SIGNAL

signal src

BRIG_OPCODE_MEMFENCE BRIG_KIND_INST_
MEMFENCE

reg-or-vector: must be BRIG_KIND_OPERAND_REGISTER; or BRIG_KIND_OPERAND_OPERAND_
LIST that references a list of BRIG_KIND_OPERAND_REGISTER operands.

address: must be BRIG_KIND_OPERAND_ADDRESS.

signal: must be BRIG_KIND_OPERAND_REGISTER.

reg-or-vector: must be BRIG_KIND_OPERAND_REGISTER; BRIG_KIND_OPERAND_CONSTANT_
BYTES; BRIG_KIND_OPERAND_WAVESIZE; or BRIG_KIND_OPERAND_OPERAND_LIST that
references a list of BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE operands.

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

18.7.3 BRIG Syntax for Image Instructions

Table 18–23 BRIG Syntax for Image Instructions

Opcode Format Oper. 0 Oper. 1 Oper. 2 Oper. 3
BRIG_OPCODE_
RDIMAGE

BRIG_KIND_INST_
IMAGE

reg-or-4-
vector-reg

image sampler reg- or-
vector-or-num

BRIG_OPCODE_
LDIMAGE

BRIG_KIND_INST_
IMAGE

reg-or-4-
vector-reg

image reg- or-
vector-or-num

BRIG_OPCODE_
STIMAGE

BRIG_KIND_INST_
IMAGE

reg-or-4-
vector-reg

image reg- or-
vector-or-num

BRIG_OPCODE_
QUERYIMAGE

BRIG_KIND_INST_
QUERYIMAGE

dest image

BRIG_OPCODE_
QUERYSAMPLER

BRIG_KIND_INST_
QUERYSAMPLER

dest sampler

BRIG_OPCODE_
IMAGEFENCE

BRIG_KIND_INST_
BASIC

dest: must be BRIG_KIND_OPERAND_REGISTER.

Chapter 18. BRIG: HSAILBinary Format 18.7 BRIG Syntax for Instructions

Chapter 18. BRIG: HSAILBinary Format 18.7 BRIG Syntax for Instructions

reg-or-4-vector-reg: must be BRIG_KIND_OPERAND_REGISTER; or BRIG_KIND_OPERAND_
OPERAND_LIST that references a list of BRIG_KIND_OPERAND_REGISTER operands.

image: must be BRIG_KIND_OPERAND_REGISTER.

sampler: must be BRIG_KIND_OPERAND_REGISTER.

reg-or-vector-or-num: must be BRIG_KIND_OPERAND_REGISTER; BRIG_KIND_OPERAND_
CONSTANT_BYTES; BRIG_KIND_OPERAND_WAVESIZE; or BRIG_KIND_OPERAND_OPERAND_LIST
that references a list of BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_
BYTES, or BRIG_KIND_OPERAND_WAVESIZE operands.

18.7.4 BRIG Syntax for Branch Instructions

Table 18–24 BRIG Syntax for Branch Instructions

Opcode Format Operand 0 Operand 1
BRIG_OPCODE_BR BRIG_KIND_INST_BR label

BRIG_OPCODE_CBR BRIG_KIND_INST_BR condition label

BRIG_OPCODE_SBR BRIG_KIND_INST_BR index labels

label: must be BRIG_KIND_OPERAND_CODE_REF that references a BRIG_KIND_DIRECTIVE_
LABEL directive in the same function scope.

condition: must be BRIG_KIND_OPERAND_REGISTER for a c register, BRIG_KIND_OPERAND_
CONSTANT_BYTES, or BRIG_KIND_OPERAND_WAVESIZE.

index: must be BRIG_KIND_OPERAND_REGISTER for an s or d register according to the instruction
type which must be u32, u64, BRIG_KIND_OPERAND_CONSTANT_BYTES, or BRIG_KIND_OPERAND_
WAVESIZE.

labels: must be BRIG_KIND_OPERAND_CODE_LIST that references a list of BRIG_KIND_
DIRECTIVE_LABEL directives all in the same function scope.

18.7.5 BRIG Syntax for Parallel Synchronization and Communication Instructions

Table 18–25 BRIG Syntax for Parallel Synchronization and Communication Instructions

Opcode Format Operand 0 Operand
1

Operand
2

Operand
3

Operand
4

BRIG_OPCODE_BARRIER BRIG_KIND_INST_BR

BRIG_OPCODE_WAVEBARRIER BRIG_KIND_INST_BR

BRIG_OPCODE_INITFBAR BRIG_KIND_INST_
BASIC

fbarrier-or-
reg

BRIG_OPCODE_JOINFBAR BRIG_KIND_INST_BR fbarrier-or-
reg

BRIG_OPCODE_WAITFBAR BRIG_KIND_INST_BR fbarrier-or-
reg

BRIG_OPCODE_ARRIVEFBAR BRIG_KIND_INST_BR fbarrier-or-
reg

BRIG_OPCODE_LEAVEFBAR BRIG_KIND_INST_BR fbarrier-or-
reg

BRIG_OPCODE_RELEASEFBAR BRIG_KIND_INST_
BASIC

fbarrier-or-
reg

356 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 357

Opcode Format Operand 0 Operand
1

Operand
2

Operand
3

Operand
4

BRIG_OPCODE_LDF BRIG_KIND_INST_
BASIC

dest fbarrier

BRIG_OPCODE_
ACTIVELANECOUNT

BRIG_KIND_INST_
LANE

dest src

BRIG_OPCODE_ACTIVELANEID BRIG_KIND_INST_
LANE

dest

BRIG_OPCODE_
ACTIVELANEMASK

BRIG_KIND_INST_
LANE

4-vector- reg src

BRIG_OPCODE_
ACTIVELANEPERMUTE

BRIG_KIND_INST_
LANE

dest src src src src

fbarrier-or-reg: must be BRIG_KIND_OPERAND_REGISTER; or BRIG_KIND_OPERAND_CODE_
REF that references a BRIG_KIND_DIRECTIVE_FBARRIER directive.

fbarrier: must be BRIG_KIND_OPERAND_CODE_REF that references a BRIG_KIND_DIRECTIVE_
FBARRIER directive.

dest: must be BRIG_KIND_OPERAND_REGISTER.

4-vector-reg: must be BRIG_KIND_OPERAND_OPERAND_LIST that references a list of BRIG_
KIND_OPERAND_REGISTER operands.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

18.7.6 BRIG Syntax for Function Instructions

Table 18–26 BRIG Syntax for Instructions Related to Functions

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3
BRIG_OPCODE_CALL BRIG_KIND_INST_BR out-args func in-args

BRIG_OPCODE_SCALL BRIG_KIND_INST_BR out-args src in-args funcs

BRIG_OPCODE_ICALL BRIG_KIND_INST_BR out-args reg in-args signature

BRIG_OPCODE_RET BRIG_KIND_INST_BASIC

BRIG_OPCODE_ALLOCA BRIG_KIND_INST_MEM dest src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

reg: must be BRIG_KIND_OPERAND_REGISTER.

out-args: output arguments; must be BRIG_KIND_OPERAND_CODE_LIST that references a list of
BRIG_KIND_DIRECTIVE_VARIABLE directives with BRIG_SEGMENT_ARG segment in the same arg
block.

in-args: input arguments; must be BRIG_KIND_OPERAND_CODE_LIST that references a list of BRIG_
KIND_DIRECTIVE_VARIABLE directives with BRIG_SEGMENT_ARG segment in the same arg block.

func: must be BRIG_KIND_OPERAND_CODE_REF that references a BRIG_DIRECTIVE_FUNCTION or
BRIG_DIRECTIVE_INDIRECT_FUNCTION directive.

Chapter 18. BRIG: HSAILBinary Format 18.7 BRIG Syntax for Instructions

Chapter 18. BRIG: HSAILBinary Format 18.7 BRIG Syntax for Instructions

funcs: must be BRIG_KIND_OPERAND_CODE_LIST that references a list of BRIG_DIRECTIVE_
FUNCTION or BRIG_DIRECTIVE_INDIRECT_FUNCTION directives.

signature: must be BRIG_KIND_OPERAND_CODE_REF that references a BRIG_KIND_DIRECTIVE_
SIGNATURE directive.

18.7.7 BRIG Syntax for Special Instructions

18.7.7.1 BRIG Syntax for Kernel Dispatch Packet Instructions

Table 18–27 BRIG Syntax for Kernel Dispatch Packet Instructions

Opcode Format Operand 0 Operand 1
BRIG_OPCODE_CURRENTWORKGROUPSIZE BRIG_KIND_INST_BASIC dest dimNumber

BRIG_OPCODE_CURRENTWORKITEMFLATID BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_DIM BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_GRIDGROUPS BRIG_KIND_INST_BASIC dest dimNumber

BRIG_OPCODE_GRIDSIZE BRIG_KIND_INST_BASIC dest dimNumber

BRIG_OPCODE_PACKETCOMPLETIONSIG BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_PACKETID BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_WORKGROUPID BRIG_KIND_INST_BASIC dest dimNumber

BRIG_OPCODE_WORKGROUPSIZE BRIG_KIND_INST_BASIC dest dimNumber

BRIG_OPCODE_WORKITEMABSID BRIG_KIND_INST_BASIC dest dimNumber

BRIG_OPCODE_WORKITEMFLATABSID BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_WORKITEMFLATID BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_WORKITEMID BRIG_KIND_INST_BASIC dest dimNumber

dest: must be BRIG_KIND_OPERAND_REGISTER.

dimNumber: must be BRIG_KIND_OPERAND_CONSTANT_BYTES with the value 0, 1, or 2 corresponding
to the X, Y, and Z dimensions respectively.

18.7.7.2 BRIG Syntax for Exception Instructions

Table 18–28 BRIG Syntax for Exception Instructions

Opcode Format Operand 0
BRIG_OPCODE_CLEARDETECTEXCEPT BRIG_KIND_INST_BASIC exceptionsNumber

BRIG_OPCODE_GETDETECTEXCEPT BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_SETDETECTEXCEPT BRIG_KIND_INST_BASIC exceptionsNumber

dest: must be BRIG_KIND_OPERAND_REGISTER.

exceptionsNumber: must be BRIG_KIND_OPERAND_CONSTANT_BYTES. The value must be encoded
according to BrigExceptionsMask (see 18.3.9. BrigExceptionsMask (page 303)).

18.7.7.3 BRIG Syntax for User Mode Queue Instructions

Table 18–29 BRIG Syntax for User Mode Queue Instructions

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3
BRIG_OPCODE_ADDQUEUEWRITEINDEX BRIG_KIND_INST_QUEUE dest address src

358 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 359

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3
BRIG_OPCODE_CASQUEUEWRITEINDEX BRIG_KIND_INST_QUEUE dest address src src

BRIG_OPCODE_LDQUEUEREADINDEX BRIG_KIND_INST_QUEUE dest address

BRIG_OPCODE_LDQUEUEWRITEINDEX BRIG_KIND_INST_QUEUE dest address

BRIG_OPCODE_STQUEUEREADINDEX BRIG_KIND_INST_QUEUE address src

BRIG_OPCODE_STQUEUEWRITEINDEX BRIG_KIND_INST_QUEUE address src

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

address: must be BRIG_KIND_OPERAND_ADDRESS.

18.7.7.4 BRIG Syntax for Miscellaneous Instructions

Table 18–30 BRIG Syntax for Miscellaneous Instructions

Opcode Format Operand 0
BRIG_OPCODE_CLOCK BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_CUID BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_DEBUGTRAP BRIG_KIND_INST_BASIC src

BRIG_OPCODE_GROUPBASEPTR BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_KERNARGBASEPTR BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_LANEID BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_MAXCUID BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_MAXWAVEID BRIG_KIND_INST_BASIC dest

BRIG_OPCODE_NOP BRIG_KIND_INST_BASIC

BRIG_OPCODE_NULLPTR BRIG_KIND_INST_SEG dest

BRIG_OPCODE_WAVEID BRIG_KIND_INST_BASIC dest

dest: must be BRIG_KIND_OPERAND_REGISTER.

src: must be BRIG_KIND_OPERAND_REGISTER, BRIG_KIND_OPERAND_CONSTANT_BYTES, or
BRIG_KIND_OPERAND_WAVESIZE.

Chapter 18. BRIG: HSAILBinary Format 18.7 BRIG Syntax for Instructions

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.1 HSAIL LexicalGrammar in Extended Backus-Naur Form (EBNF)

CHAPTER 19.
HSAIL Grammar in Extended Backus-Naur Form

This chapter provides the HSAIL lexical and syntax grammar in Extended Backus-Naur Form.

19.1 HSAIL Lexical Grammar in Extended Backus-Naur Form (EBNF)
This appendix shows the HSAIL lexical grammar in Extended Backus–Naur Form (EBNF).

Symbol meanings are:

l :== grammar production

l [] optional

l {} repetition

l | alternative

l '[a-z]' must be one of the characters in the []

l '[a-z]{n}' must be exactly n of the characters in the []

l '[a-z]{n,m}' must be between n and m of the characters in the []

l 'not [a-z]' must not be one of the characters in the []

TOKEN_COMMENT ::= ("/*" { 'not [*]' | "*" 'not [/]' } "*/")
| ("//" { 'not new-line' }
)

TOKEN_GLOBAL_IDENTIFIER ::= "&" identifier

TOKEN_LOCAL_IDENTIFIER ::= "%" identifier

TOKEN_LABEL_IDENTIFIER ::= "@" identifier

identifier ::= '[a-zA-Z_]' { '[a-zA-Z0-9_.]' }

TOKEN_CREGISTER ::= "$c" registerNumber

TOKEN_SREGISTER ::= "$s" registerNumber

TOKEN_DREGISTER ::= "$d" registerNumber

TOKEN_QREGISTER ::= "$q" registerNumber

registerNumber ::= "0"
| '[1-9]' { '[0-9]' }

TOKEN_INTEGER_CONSTANT ::= decimalIntegerConstant
| hexIntegerConstant
| octalIntegerConstant

decimalIntegerConstant ::= "0" | ('[1-9]' { '[0-9]' })

hexIntegerConstant ::= "0" ("x" | "X") '[0-9a-fA-F]' {
'[0-9a-fA-F]' }

360 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 361

octalIntegerConstant ::= "0" '[0-7]' { '[0-7]' }

TOKEN_HALF_CONSTANT ::= decimalFloatConstant ("h" | "H")
| hexFloatConstant ("h" | "H")
| ieeeHalfConstant

TOKEN_SINGLE_CONSTANT ::= decimalFloatConstant ("f" | "F")
| hexFloatConstant ("f" | "F")
| ieeeSingleConstant

TOKEN_DOUBLE_CONSTANT ::= decimalFloatConstant ["d" | "D"]
| hexFloatConstant ["d" | "D"]
| ieeeDoubleConstant

decimalFloatConstant ::= (('[0-9]' { '[0-9]' } "."
| { '[0-9]' } "." '[0-9]' { '[0-9]' }
)
[("e" | "E") ["+" | "-"] '[0-9]'
{ '[0-9]' }]

)
| '[0-9]' { '[0-9]' } ("e" | "E")
["+" | "-"] '[0-9]' { '[0-9]' }

hexFloatConstant ::= "0" ("x" | "X")
('[0-9a-fA-F]' { '[0-9a-fA-F]' }
["."]

| { '[0-9a-fA-F]' } "." '[0-9a-fA-F]'
{ '[0-9a-fA-F]' }

)
("p" | "P") ["+" | "-"] '[0-9]'
{ '[0-9]' }

ieeeHalfConstant ::= "0" ("h" | "H") '[0-9a-fA-F]{4}'

ieeeSingleConstant ::= "0" ("f" | "F") '[0-9a-fA-F]{8}'

ieeeDoubleConstant ::= "0" ("d" | "D") '[0-9a-fA-F]{16}'

TOKEN_WAVESIZE ::= "WAVESIZE"

TOKEN_STRING ::= '"'
{ 'not ([\"] or new-line)'
| "\"
('"'
| "[\'?abfnrtv]"
| '[0-7]{1,3}'
| "x" '[0-9a-fA-F]' { '[0-9a-fA-F]' }
)

}
'"'

19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)
This appendix shows the HSAIL syntax grammar in Extended Backus–Naur Form (EBNF).

Symbol meanings are:

l :== grammar production

l [] optional

l {} repetition

l | alternative

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

module ::= annotations moduleHeader annotations
{ moduleDirective annotations }
{ moduleStatement annotations }

annotations ::= { annotation }
annotation ::= TOKEN_COMMENT

| location
| pragma

location ::= "loc"
TOKEN_INTEGER_CONSTANT
[TOKEN_INTEGER_CONSTANT]
[TOKEN_STRING] ";"

pragma ::= "pragma" pragmaOperand { "," pragmaOperand } ";"
moduleHeader ::= "module"

TOKEN_GLOBAL_IDENTIFIER ":"
TOKEN_INTEGER_CONSTANT ":"
TOKEN_INTEGER_CONSTANT ":"
profile ":"
machineModel ":"
defaultFloatRounding ";"

profile ::= "$full"
| "$base"

machineModel ::= "$small"
| "$large"

defaultFloatRounding ::= "$default"
| "$zero"
| "$near"

moduleDirective ::= extension
extension ::= "extension" TOKEN_STRING ";"
moduleStatement ::= moduleVariable

| moduleFbarrier
| kernel
| function
| signature

moduleVariable ::= optDeclQual linkageQual variable
variable ::= optAllocQual optAlignQual optConstQual variableSegment

dataTypeMod TOKEN_GLOBAL_IDENTIFIER optArrayDimension
optInitializer ";"

optInitializer ::= ["=" initializerConstant]
initializerConstant ::= integerConstant

| floatConstant
| typedConstant
| aggregateConstant

aggregateConstant ::= "{" { aggregateConstantItem "," } aggregateConstantItem "}"
aggregateConstantItem ::= typedConstant

| aggregateConstantAlign
aggregateConstantAlign ::= "align" "(" TOKEN_INTEGER_CONSTANT ")"
typedConstant ::= integerTypedConstant

| floatTypedConstant
| packedTypedConstant
| imageTypedConstant
| samplerTypedConstant
| signalTypedConstant
| arrayTypedConstant

integerTypedConstant ::= integerType "(" integerConstant ")"
integerConstant ::= ["+" | "-"] TOKEN_INTEGER_CONSTANT
floatTypedConstant ::= "f16" "(" halfConstant ")"

| "f32" "(" singleConstant ")"
| "f64" "(" doubleConstant ")"

floatConstant ::= halfConstant
| singleConstant
| doubleConstant

halfConstant ::= ["+" | "-"] TOKEN_HALF_CONSTANT
singleConstant ::= ["+" | "-"] TOKEN_SINGLE_CONSTANT
doubleConstant ::= ["+" | "-"] TOKEN_DOUBLE_CONSTANT

362 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 363

packedTypedConstant ::= integerPackedType
"(" { integerConstant "," } integerConstant ")"

| halfPackedType
"(" { halfConstant "," } halfConstant ")"

| singlePackedType
"(" { singleConstant "," } singleConstant ")"

| doublePackedType
"(" { doubleConstant "," } doubleConstant ")"

imageTypedConstant ::= imageType "(" { imageProperty "," } imageProperty ")"
imageProperty ::= "geometry" "=" imageGeometry

| "width" "=" TOKEN_INTEGER_CONSTANT
| "height" "=" TOKEN_INTEGER_CONSTANT
| "depth" "=" TOKEN_INTEGER_CONSTANT
| "array" "=" TOKEN_INTEGER_CONSTANT
| "channel_order" "=" imageChannelOrder
| "channel_type" "=" imageChannelType

imageGeometry ::= "1d"
| "2d"
| "3d"
| "1da"
| "2da"
| "1db"
| "2ddepth"
| "2dadepth"

imageChannelType ::= "snorm_int8"
| "snorm_int16"
| "unorm_int8"
| "unorm_int16"
| "unorm_int24"
| "unorm_short_555"
| "unorm_short_565"
| "unorm_int_101010"
| "signed_int8"
| "signed_int16"
| "signed_int32"
| "unsigned_int8"
| "unsigned_int16"
| "unsigned_int32"
| "half_float"
| "float"

imageChannelOrder ::= "a"
| "r"
| "rx"
| "rg"
| "rgx"
| "ra"
| "rgb"
| "rgbx"
| "rgba"
| "bgra"
| "argb"
| "abgr"
| "srgb"
| "srgbx"
| "srgba"
| "sbgra"
| "intensity"
| "luminance"
| "depth"
| "depth_stencil"

samplerTypedConstant ::= samplerType "(" { samplerProperty "," } samplerProperty ")"
samplerProperty ::= "coord" "=" samplerCoord

| "filter" "=" samplerFilter
| "addressing" "=" samplerAddressing

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

samplerCoord ::= "normalized"
| "unnormalized"

samplerFilter ::= "nearest"
| "linear"

samplerAddressing ::= "undefined"
| "clamp_to_edge"
| "clamp_to_border"
| "repeat"
| "mirrored_repeat"

signalTypedConstant ::= signalType "(" integerConstant ")"
arrayTypedConstant ::= integerArrayTypedConstant

| halfArrayTypedConstant
| singleArrayTypedConstant
| doubleArrayTypedConstant
| packedArrayTypedConstant
| imageArrayTypedConstant
| samplerArrayTypedConstant
| signalArrayTypedConstant

integerArrayTypedConstant ::= integerType "[]" "("
{ (integerConstant | integerTypedConstant) "," }
(integerConstant | integerTypedConstant) ")"

halfArrayTypedConstant ::= "f16" "[]" "("
{ (halfConstant | "f16" "(" halfConstant ")") "," }
(halfConstant | "f16" "(" halfConstant ")") ")"

singleArrayTypedConstant ::= "f32" "[]" "("
{ (singleConstant | "f32" "(" singleConstant ")") "," }
(singleConstant | "f32" "(" singleConstant ")") ")"

doubleArrayTypedConstant ::= "f64" "[]" "("
{ (doubleConstant | "f64" "(" doubleConstant ")") "," }
(doubleConstant | "f64" "(" doubleConstant ")") ")"

packedArrayTypedConstant ::= packedType "[]" "("
{ packedTypedConstant "," } packedTypedConstant ")"

imageArrayTypedConstant ::= imageType "[]" "("
{ imageTypedConstant "," } imageTypedConstant ")"

samplerArrayTypedConstant ::= samplerType "[]" "("
{ samplerTypedConstant "," } samplerTypedConstant ")"

signalArrayTypedConstant ::= signalType "[]" "("
{ signalTypedConstant "," } signalTypedConstant ")"

moduleFbarrier ::= optDeclQual linkageQual fbarrier
fbarrier ::= "fbarrier" TOKEN_GLOBAL_IDENTIFIER ";"
kernel ::= declQual linkageQual kernelHeader ";"

| linkageQual kernelHeader codeBlock ";"
kernelHeader ::= "kernel" TOKEN_GLOBAL_IDENTIFIER kernFormalArgumentList
kernFormalArgumentList ::= "(" [{ kernFormalArgment "," } kernFormalArgument] ")"
kernFormalArgument ::= optAlignQual "kernarg" dataTypeMod

TOKEN_LOCAL_IDENTIFIER optArrayDimension
function ::= declQual linkageQual functionHeader ";"

| linkageQual functionHeader codeBlock ";"
functionHeader ::= ["indirect"] "function" TOKEN_GLOBAL_IDENTIFIER

funcOutputFormalArgumentList funcInputFormalArgumentList
funcOutputFormalArgumentList ::= functionFormalArgumentList
funcInputFormalArgumentList ::= functionFormalArgumentList
funcFormalArgumentList ::= "(" [{ funcFormalArgument "," } funcFormalArgument] ")"
funcFormalArgument ::= optAlignQual "arg" dataTypeMod

TOKEN_LOCAL_IDENTIFIER optArrayDimension
signature ::= "signature" TOKEN_GLOBAL_IDENTIFIER

sigOutputFormalArgumentList sigInputFormalArgumentList ";"
sigOutputFormalArgumentList ::= sigFormalArgumentList
sigInputFormalArgumentList ::= sigFormalArgumentList
sigFormalArgumentList ::= "(" [{ sigFormalArgument "," } sigFormalArgument] ")"
sigFormalArgument ::= optAlignQual "arg" dataTypeMod

[TOKEN_LOCAL_IDENTIFIER] optArrayDimension
linkageQual ::= ["prog"]
optDeclQual ::= [declQual]

364 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 365

declQual ::= "decl"
optConstQual ::= ["const"]
optAlignQual ::= ["align" "(" TOKEN_INTEGER_CONSTANT ")"]
optAllocQual ::= ["alloc" "(" allocationKind ")"]
allocationKind ::= "agent"
optArrayDimension ::= ["[" [TOKEN_INTEGER_CONSTANT] "]"]
codeBlock ::= "{" annotations

{ codeBlockDirective annotations }
{ codeBlockDefinition annotations }
{ codeBlockStatement annotations }
"}"

codeBlockDirective ::= control
control ::= "enablebreakexceptions" TOKEN_INTEGER_CONSTANT ";"

| "enabledetectexceptions" TOKEN_INTEGER_CONSTANT ";"
| "maxdynamicgroupsize" TOKEN_INTEGER_CONSTANT ";"
| "maxflatgridsize"
(TOKEN_INTEGER_CONSTANT | TOKEN_WAVESIZE) ";"

| "maxflatworkgroupsize"
(TOKEN_INTEGER_CONSTANT | TOKEN_WAVESIZE) ";"

| "requireddim" TOKEN_INTEGER_CONSTANT ";"
| "requiredgridsize"
(TOKEN_INTEGER_CONSTANT | TOKEN_WAVESIZE) ","
(TOKEN_INTEGER_CONSTANT | TOKEN_WAVESIZE) ","
(TOKEN_INTEGER_CONSTANT | TOKEN_WAVESIZE) ";"

| "requiredworkgroupsize"
(TOKEN_INTEGER_CONSTANT | TOKEN_WAVESIZE) ","
(TOKEN_INTEGER_CONSTANT | TOKEN_WAVESIZE) ","
(TOKEN_INTEGER_CONSTANT | TOKEN_WAVESIZE) ";"

| "requirenopartialworkgroups" ";"
codeBlockDefinition ::= codeBlockVariable

| codeBlockFbarrier
codeBlockVariable ::= variable
codeBlockFbarrier ::= fbarrier
codeBlockStatement ::= argBlock

| label
| instruction

argBlock ::= "{" annotations
{ argBlockDefinition annotations }
{ argBlockStatement annotations }
"}"

argBlockDefinition ::= argBlockVariable
argBlockVariable ::= variable
argBlockStatement ::= label

| instruction
| call

label ::= TOKEN_LABEL_IDENTIFIER ":"
instruction ::= instruction0

| instruction1
| instruction2
| instruction3
| instruction4
| mul
| bitinsert
| combine
| expand
| lda
| mov
| pack
| unpack
| packcvt
| unpackcvt
| sad
| segmentConversion
| cmp

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

| cvt
| ld
| st
| atomic
| atomicnoret
| signal
| signalnoret
| memfence
| rdimage
| stimage
| ldimage
| queryimage
| querysampler
| branch
| barrier
| wavebarrier
| fbarrier
| crossLane
| ret
| alloca
| packetcompletionsig
| queue

instruction0 ::= ("nop"
| "imagefence"
)
";"

instruction1 ::= (instruction1Opcode optRoundingMod nonOpaqueTypeMod
| "nullptr" optSegmentMod nonOpaqueTypeMod
)
operand ";"

instruction1Opcode ::= "cleardetectexcept"
| "clock"
| "cuid"
| "debugtrap"
| "dim"
| "getdetectexcept"
| "groupbaseptr"
| "kernargbaseptr"
| "laneid"
| "maxcuid"
| "maxwaveid"
| "packetid"
| "setdetectexcept"
| "waveid"
| "workitemflatabsid"
| "workitemflatid"

instruction2 ::= (instruction2Opcode optRoundingMod optPackingMod
| instruction2OpcodeFtz optFtzMod optPackingMod
| "popcount" nonOpaqueTypeMod
| "firstbit" nonOpaqueTypeMod
| "lastbit" nonOpaqueTypeMod
)
nonOpaqueTypeMod operand "," operand ";"

instruction2Opcode ::= "abs"
| "bitrev"
| "currentworkgroupsize"
| "currentworkitemflatid"
| "fract"
| "ncos"
| "neg"
| "nexp2"
| "nlog2"
| "nrcp"
| "nrsqrt"

366 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 367

| "nsin"
| "nsqrt"
| "gridgroups"
| "gridsize"
| "not"
| "sqrt"
| "workgroupid"
| "workgroupsize"
| "workitemabsid"
| "workitemid"

instruction2OpcodeFtz ::= "ceil"
| "floor"
| "rint"
| "trunc"

instruction3 ::= (instruction3Opcode optRoundingMod optPackingMod
| instruction3OpcodeFtz optFtzMod optPackingMod
| "class" nonOpaqueTypeMod
)
nonOpaqueTypeMod operand "," operand "," operand ";"

instruction3Opcode ::= "add"
| "bitmask"
| "borrow"
| "carry"
| "copysign"
| "div"
| "rem"
| "sub"
| "shl"
| "shr"
| "and"
| "or"
| "xor"
| "unpackhi"
| "unpacklo"

instruction3OpcodeFtz ::= "max"
| "min"

instruction4 ::= (instruction4Opcode optRoundingMod
| instruction4OpcodeFtz optFtzMod optPackingMod
)
nonOpaqueTypeMod operand "," operand "," operand "," operand ";"

instruction4Opcode ::= "fma"
| "mad"
| "bitextract"
| "bitselect"
| "shuffle"
| "cmov"
| "bitalign"
| "bytealign"
| "lerp"

instruction4OpcodeFtz ::= "nfma"
mul ::= ("mul" optRoundingMod optPackingMod nonOpaqueTypeMod

| "mulhi" optPackingMod nonOpaqueTypeMod
| "mul24hi" nonOpaqueTypeMod
| "mul24" nonOpaqueTypeMod
| "mad24" nonOpaqueTypeMod operand ","
| "mad24hi" nonOpaqueTypeMod operand ","
) operand "," operand "," operand ";"

bitinsert ::= "bitinsert" nonOpaqueTypeMod operand "," operand ","
operand "," operand "," operand ";"

combine ::= "combine" vectorMod nonOpaqueTypeMod nonOpaqueTypeMod
operand "," vectorOperand ";"

expand ::= "expand" vectorMod nonOpaqueTypeMod nonOpaqueTypeMod
vectorOperand "," operand ";"

lda ::= "lda" optSegmentMod nonOpaqueTypeMod operand ","

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

memoryOperand ";"
mov ::= "mov" dataTypeMod operand "," operand ";"
pack ::= "pack" nonOpaqueTypeMod nonOpaqueTypeMod operand ","

operand "," operand "," operand ";"
unpack ::= "unpack" nonOpaqueTypeMod nonOpaqueTypeMod operand ","

operand "," operand ";"
packcvt ::= "packcvt" nonOpaqueTypeMod nonOpaqueTypeMod operand ","

operand "," operand "," operand "," operand ";"
unpackcvt ::= "unpackcvt" nonOpaqueTypeMod nonOpaqueTypeMod operand ","

operand "," operand ";"
sad ::= ("sad" | "sadhi") nonOpaqueTypeMod nonOpaqueTypeMod

operand "," operand "," operand "," operand ";"
segmentConversion ::= ("segmentp" | "ftos" | "stof")

segmentMod optNullMod nonOpaqueTypeMod nonOpaqueTypeMod
operand "," operand ";"

cmp ::= "cmp" comparisonOp optFtzMod optPackingMod nonOpaqueTypeMod
nonOpaqueTypeMod operand "," operand "," operand ";"

comparisonOp ::= "_eq"
| "_ne"
| "_lt"
| "_le"
| "_gt"
| "_ge"
| "_equ"
| "_neu"
| "_ltu"
| "_leu"
| "_gtu"
| "_geu"
| "_num"
| "_nan"
| "_seq"
| "_sne"
| "_slt"
| "_sle"
| "_sgt"
| "_sge"
| "_snum"
| "_snan"
| "_sequ"
| "_sneu"
| "_sltu"
| "_sleu"
| "_sgtu"
| "_sgeu"

cvt ::= "cvt" optCvtRoundingMod nonOpaqueTypeMod
nonOpaqueTypeMod operand "," operand ";"

optCvtRoundingMod ::= [cvtRoundingMod]
cvtRoundingMod ::= floatRoundingMod

| "_ftz"
| "_ftz" floatRoundingMod
| intRoundingMod
| "_ftz" intRoundingMod

ld ::= "ld" optVectorMod optSegmentMod
optAlignMod optConstMod optEquivMod optWidthMod dataTypeMod
possibleVectorOperand "," memoryOperand ";"

st ::= "st" optVectorMod optSegmentMod
optAlignMod optEquivMod dataTypeMod
possibleVectorOperand "," memoryOperand ";"

atomic ::= "atomic"
(atomicOp
optSegmentMod memOrderMod memScopeMod optEquivMod
nonOpaqueTypeMod operand "," memoryOperand "," operand

| "_ld"

368 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 369

optSegmentMod ldMemOrderMod memScopeMod optEquivMod
nonOpaqueTypeMod operand "," memoryOperand

| "_cas"
optSegmentMod memOrderMod memScopeMod optEquivMod
nonOpaqueTypeMod
operand "," memoryOperand "," operand "," operand

) ";"
atomicnoret ::= "atomicnoret"

(atomicOp
optSegmentMod memOrderMod memScopeMod optEquivMod
nonOpaqueTypeMod memoryOperand "," operand

| "_st"
optSegmentMod stMemOrderMod memScopeMod optEquivMod
nonOpaqueTypeMod memoryOperand "," operand

) ";"
atomicOp ::= "_add"

| "_and"
| "_exch"
| "_max"
| "_min"
| "_or"
| "_sub"
| "_wrapdec"
| "_wrapinc"
| "_xor"

signal ::= "signal"
(signalOp
memOrderMod nonOpaqueTypeMod signalTypeMod
operand "," operand "," operand

| "_ld"
ldMemOrderMod nonOpaqueTypeMod signalTypeMod
operand "," operand

| "_cas"
memOrderMod nonOpaqueTypeMod signalTypeMod
operand "," operand "," operand "," operand

| "_wait"
waitOp memOrderMod nonOpaqueTypeMod signalTypeMod
operand "," operand "," operand

| "_waittimeout"
waitOp memOrderMod nonOpaqueTypeMod signalTypeMod
operand "," operand "," operand "," operand

) ";"
signalnoret ::= "signalnoret"

(signalOp
memOrderMod nonOpaqueTypeMod signalTypeMod
operand "," operand

| "_st"
stMemOrderMod nonOpaqueTypeMod signalTypeMod
operand "," operand

) ";"
signalOp ::= "_add"

| "_and"
| "_exch"
| "_or"
| "_sub"
| "_xor"

waitOp ::= "_eq"
| "_ne"
| "_lt"
| "_gte"

memfence ::= "memfence" fenceMemOrderMod memScopeMod ";"
memOrderMod ::= "_scacq" | "_screl" | "_scar" | "_rlx"
stMemOrderMod ::= "_screl" | "_rlx"
ldMemOrderMod ::= "_scacq" | "_rlx"

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

fenceMemOrderMod ::= "_scacq" | "_screl" | "_scar"
memScopeMod ::= "_wave" | "_wg" | "_agent" | "_system"
rdimage ::= "rdimage" ["_v4"] geometryMod optEquivMod

nonOpaqueTypeMod imageTypeMod nonOpaqueTypeMod
possibleVectorOperand "," operand "," operand ","
possibleVectorOperand ";"

ldimage ::= "ldimage" ["_v4"] geometryMod optEquivMod
nonOpaqueTypeMod imageTypeMod nonOpaqueTypeMod
possibleVectorOperand "," operand ","
possibleVectorOperand ";"

stimage ::= "stimage" ["_v4"] geometryMod optEquivMod
nonOpaqueTypeMod imageTypeMod nonOpaqueTypeMod
possibleVectorOperand "," operand ","
possibleVectorOperand ";"

geometryMod ::= "_1d"
| "_2d"
| "_3d"
| "_1da"
| "_2da"
| "_1db"
| "_2ddepth"
| "_2dadepth"

queryimage ::= "queryimage" geometryMod queryimageOp nonOpaqueTypeMod
imageTypeMod operand "," operand ";"

queryimageOp ::= "_width"
| "_height"
| "_depth"
| "_array"
| "_channelorder"
| "_channeltype"

querysampler ::= "querysampler" querysamplerOp nonOpaqueTypeMod
operand "," operand ";"

querysamplerOp ::= "_coord"
| "_filter"
| "_addressing"

branch ::= "br" TOKEN_LABEL_IDENTIFIER ";"
| "cbr" optWidthMod nonOpaqueTypeMod
TOKEN_CREGISTER "," TOKEN_LABEL_IDENTIFIER ";"

| "sbr" optWidthMod nonOpaqueTypeMod operand
branchTargets ";"

branchTargets ::= "[" { TOKEN_LABEL_IDENTIFIER "," } TOKEN_LABEL_IDENTIFIER "]"
barrier ::= "barrier" optWidthMod ";"
wavebarrier ::= "wavebarrier" ";"
fbarrier ::= "initfbar" operand ";"

| "joinfbar" optWidthMod operand ";"
| "waitfbar" optWidthMod operand ";"
| "arrivefbar" optWidthMod operand ";"
| "leavefbar" optWidthMod operand ";"
| "releasefbar" operand ";"
| "ldf" nonOpaqueTypeMod
operand "," nonRegisterIdentifier ";"

crossLane ::= "activelaneid" optWidthMod nonOpaqueTypeMod operand ";"
| "activelanecount" optWidthMod nonOpaqueTypeMod
nonOpaqueTypeMod operand "," operand ";"

| "activelanemask" "_v4" optWidthMod nonOpaqueTypeMod
nonOpaqueTypeMod vectorOperand "," operand ";"

| "activelanepermute" optWidthMod nonOpaqueTypeMod
operand "," operand "," operand "," operand "," operand

call ::= "call" TOKEN_GLOBAL_IDENTIFIER
callOutputActualArgments callInputActualArgments ";"

| "scall" optWidthMod nonOpaqueTypeMod operand
callOutputActualArgments callInputActualArgments
callTargets ";"

| "icall" optWidthMod nonOpaqueTypeMod operand

370 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 371

callOutputActualArguments callInputActualArguments
TOKEN_GLOBAL_IDENTIFIER ";"

callOutputActualArgments ::= callActualArguments
callInputActualArgments ::= callActualArguments
callActualArgments ::= "(" [operandList] ")"
callTargets ::= "[" { TOKEN_GLOBAL_IDENTIFIER "," }

TOKEN_GLOBAL_IDENTIFIER "]"
ret ::= "ret" ";"
alloca ::= "alloca" optAlignMod nonOpaqueTypeMod

operand "," operand ";"
packetcompletionsig ::= "packetcompletionsig" signalTypeMod operand ";"
queue ::= "addqueuewriteindex" segmentMod memOrderMod

nonOpaqueTypeMod operand "," memoryOperand "," operand ";"
| "casqueuewriteindex" segmentMod memOrderMod
nonOpaqueTypeMod operand "," memoryOperand "," operand ","
operand ";"

| ("ldqueuereadindex" | "ldqueuewriteindex")
segmentMod memOrderMod nonOpaqueTypeMod
operand "," memoryOperand ";"

| ("stqueuereadindex" | "stqueuewriteindex")
segmentMod memOrderMod nonOpaqueTypeMod
memoryOperand "," operand ";"

pragmaOperand ::= TOKEN_STRING
| immediateOperand
| aggregateConstant
| identifierOperand
| TOKEN_LABEL_IDENTIFIER

operand ::= immediateOperand
| identifierOperand

immediateOperand ::= integerConstant
| floatConstant
| typedConstant
| TOKEN_WAVESIZE

memoryOperand ::= symbolicAddressableOperand
| offsetAddressableOperand
| symbolicAddressableOperand offsetAddressableOperand

symbolicAddressableOperand ::= "[" nonRegisterIdentifier "]"
offsetAddressableOperand ::= "[" registerIdentifier "+" TOKEN_INTEGER_CONSTANT "]"

| "[" registerIdentifier "-" TOKEN_INTEGER_CONSTANT "]"
| "[" registerIdentifier "]"
| "[" TOKEN_INTEGER_CONSTANT "]"
| "[" "+" TOKEN_INTEGER_CONSTANT "]"
| "[" "-" TOKEN_INTEGER_CONSTANT "]"

possibleVectorOperand ::= operand
| vectorOperand

vectorOperand ::= "(" operandList ")"
operandList ::= { operand "," } operand
identifierOperand ::= nonRegisterIdentifier

| registerIdentifier
nonRegisterIdentifier ::= TOKEN_GLOBAL_IDENTIFIER

| TOKEN_LOCAL_IDENTIFIER
registerIdentifier ::= TOKEN_CREGISTER

| TOKEN_DREGISTER
| TOKEN_QREGISTER
| TOKEN_SREGISTER

variableSegment ::= "readonly"
| "global"
| "private"
| "group"
| "spill"
| "arg"

segmentMod ::= "_readonly"
| "_kernarg"
| "_global"

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

| "_private"
| "_arg"
| "_group"
| "_spill"

optSegmentMod ::= [segmentMod]
optAlignMod ::= ["_align" "(" TOKEN_INTEGER_CONSTANT ")"]
optConstMod ::= ["_const"]
optEquivMod ::= ["_equiv" "(" TOKEN_INTEGER_CONSTANT ")"]
optNullMod ::= ["_nonull"]
optWidthMod ::= ["_width" "("

("all"
| TOKEN_WAVESIZE
| TOKEN_INTEGER_CONSTANT
) ")"]

optVectorMod ::= [vectorMod]
vectorMod ::= "_v2"

| "_v3"
| "_v4"

optRoundingMod ::= optFtzMod [floatRoundingMod]
optFtzMod ::= ["_ftz"]
floatRoundingMod ::= "_up"

| "_down"
| "_zero"
| "_near"

intRoundingMod ::= "_upi"
| "_downi"
| "_zeroi"
| "_neari"
| "_upi_sat"
| "_downi_sat"
| "_zeroi_sat"
| "_neari_sat"
| "_supi"
| "_sdowni"
| "_szeroi"
| "_sneari"
| "_supi_sat"
| "_sdowni_sat"
| "_szeroi_sat"
| "_sneari_sat"

optPackingMod ::= [packingMod]
packingMod ::= "_pp"

| "_ps"
| "_sp"
| "_ss"
| "_s"
| "_p"
| "_pp_sat"
| "_ps_sat"
| "_sp_sat"
| "_ss_sat"
| "_s_sat"
| "_p_sat"

dataTypeMod ::= "_" dataType
dataType ::= baseType

| packedType
| opaqueType

nonOpaqueTypeMod ::= "_" nonOpaqueType
nonOpaqueType ::= baseType

| packedType
baseType ::= integerType

| floatType
| bitType

integerType ::= "u8"

372 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 373

| "s8"
| "u16"
| "s16"
| "u32"
| "s32"
| "u64"
| "s64"

bitType ::= "b1"
| "b8"
| "b16"
| "b32"
| "b64"
| "b128"

floatType ::= "f16"
| "f32"
| "f64"

packedType ::= integerPackedType
| halfPackedType
| singlePackedType
| doublePackedType

integerPackedType ::= "u8x4"
| "s8x4"
| "u16x2"
| "s16x2"
| "u8x8"
| "s8x8"
| "u16x4"
| "s16x4"
| "u32x2"
| "s32x2"
| "u8x16"
| "s8x16"
| "u16x8"
| "s16x8"
| "u32x4"
| "s32x4"
| "u64x2"
| "s64x2"

halfPackedType ::= "f16x2"
| "f16x4"
| "f16x8"

singlePackedType ::= "f32x2"
| "f32x4"

doublePackedType ::= "f64x2"
opaqueType ::= imageType

| samplerType
| signalType

imageTypeMod ::= "_" imageType
imageType ::= "roimg"

| "woimg"
| "rwimg"

samplerTypeMod ::= "_" samplerType
samplerType ::= "samp"
signalTypeMod ::= "_" signalType
signalType ::= "sig32"

| "sig64"

Chapter 19. HSAILGrammar in ExtendedBackus-Naur Form 19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

AppendixA. Limits

APPENDIX A.
Limits

This appendix lists the maximum or minimum values that HSA implementations must support:

l c registers: The c registers in HSAIL are a single pool of resources per function scope. It is an error if
the value (c

max
+1) exceeds 128 for any kernel or function definition, where c

max
is the highest c

register number in the kernel or function code block, or -1 if no c registers are used. For example, if
a function code block only uses registers $c0 and $c7, then c

max
is 7 not 2.

l s, d, and q registers: The s, d, and q registers in HSAIL share a single pool of resources per function
scope. It is an error if the value ((s

max
+1) + 2*(d

max
+1) + 4*(q

max
+1)) exceeds 2048 for

any kernel or function definition, where s
max

, d
max

, and q
max

are the highest register number in the
kernel or function code block for the corresponding register type, or -1 if no registers of that type are
used. For example, if a function code block only uses registers $s0 and $s7, then s

max
is 7 not 2.

l Equivalence classes: Every implementation must support exactly 256 classes.

l Identifiers: Every HSAIL implementation must support identifiers with names whose size ranges from
1 to 1024 characters. Implementations are allowed to support longer names.

l Work-group size: Every implementation must support work-group sizes of 256 or larger. The work-
group size is the product of the three work-group dimensions.

l Wavefront size: Every implementation must have a wavefront size that is a power of 2 in the range
from 1 to 256 inclusive.

l Flattened ID (work-item flattened ID, work-item absolute flattened ID, and work-group flattened ID):
Every implementation must support flattened IDs of 232 - 1.

l Number of work-groups: The only limit on the number of work-groups in a single kernel dispatch is a
consequence of the size of the flattened IDs.

Because each flattened ID is guaranteed to fit in 32 bits, the maximum number of work-groups in a
single grid is limited to 232 - 1.

l Grid dimensions: Every implementation must support up to 232 - 1 sizes in each grid dimension. The
product of the three is also limited to 232 - 1.

l Number of fbarriers: Every implementation must support at least 32 fbarriers per work-group.

l Size of group segment memory: Every implementation must support at least 32K bytes of group
segment memory per compute unit for group segment variables. This amount might be reduced if
an implementation uses group memory for the implementation of other HSAIL features such as
fbarriers (see 9.2. Fine-Grain Barrier (fbarrier) Instructions (page 230)) and the exception detection
operations (see 11.2. Exception Instructions (page 260)).

l Size of private segment memory: Every implementation must support at least 64K bytes of private
segment memory per work-group.

374 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 375

l Size of kernarg segment memory: Every implementation must support at least 1K bytes of kernarg
segment memory per dispatch (see 4.21. Kernarg Segment (page 114)).

l Size of arg segment memory: Every implementation must support at least 64 bytes of arg segment
variables per argument scope (see 10.2. Function Call Argument Passing (page 244)).

l Image data type support: Every agent that supports images must support images as defined in
Chapter 7. Image Instructions (page 194) with the following per agent limits:

o 1D images: Must support 1D, 1DA image sizes up to 16384 image elements for width.

o 2D images: Must support 2D, 2DA, 2DDEPTH, 2DADEPTH image sizes up to (16384 x 16384)
image elements for (width, height) respectively.

o 3D images: Must support 3D image sizes up to (2048 x 2048 x 2048) image elements for
(width, height, depth) respectively.

o Image arrays: Must support 1DA, 2DA, 2DADEPTH image arrays up to 2048 image layers for
array size.

o 1DB images: Must support 1DB image sizes up to 65536 image elements for width.

o Read-only image handles: Must support having at least 128 read-only image handles created
at any one time.

o Write-only and read-write image handles: Must support having at combined total of at least
64 write-only and read-write image handles created at any one time.

o Sampler handles: Must support having at least 16 sampler handles created at any one time.

AppendixA. Limits

AppendixB. Glossary of HSAILTerms

APPENDIX B.
Glossary of HSAIL Terms

acquire synchronizing operation

An atomic memory operation that specifies an acquire memory ordering (an ld_acq, atomic_ar, or
atomicnoret_ar instruction).

active work-group

A work-group executing in a compute unit.

active work-item

A work-item in an active work-group. At an instruction, an active work-item is one that executes the
current instruction.

agent

A hardware or software component that participates in the HSA memory model. An agent can submit
AQL packets for execution. An agent may also, but is not required, to be a kernel agent. It is possible for
a system to include agents that are neither kernel agents nor host CPUs. See 1.1. What Is HSAIL? (page
20).

application program

An executable that can be executed on a host CPU. In addition to the host CPU code, it may include zero
or more HSA executables into which zero or more HSA code objects have been loaded for zero or more
kernel agents. See 4.2. Program, Code Object, and Executable (page 48).

Architected Queuing Language (AQL)

An AQL packet is an HSA-standard packet format. AQL kernel dispatch packets are used to dispatch
kernels on the kernel agent and specify the launch dimensions, instruction code, kernel arguments,
completion detection, and more. Other AQL packets control aspects of a kernel agent such as when to
execute AQL packets and making the results of memory instructions visible. AQL packets are queued on
User Mode Queues. See HSA Platform System Architecture Specification Version 1.0 section 2.9
Requirement: Architected Queuing Language (AQL).

arg segment

A memory segment used to pass arguments into and out of functions. See 2.8.1. Types of Segments
(page 31) and 10.2. Function Call Argument Passing (page 244).

BRIG

The HSAIL binary format. See Chapter 18. BRIG: HSAIL Binary Format (page 298).

376 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 377

call convention

Each kernel agent can support one or more call conventions. For example, a kernel agent may have
different call conventions that each use a different number of hardware registers to allow different
numbers of wavefronts to execute on a compute unit. See 4.2.1. Finalization (page 49).

compound type

A type made up of a base data type and a length. See 4.13.1. Base Data Types (page 99).

compute unit

A piece of virtual hardware capable of executing the HSAIL instruction set. The work-items of a work-
group are executed on the same compute unit. A kernel agent is composed of one or more compute
units. See 2.1. Overview of Grids, Work-Groups, and Work-Items (page 23).

current work-item flattened ID

The current work-item ID flattened into one dimension. Uses current work-group size and so differs for
partial work-groups than work-item flattened ID. See 2.3.2. Work-Item Flattened ID and Current Work-
Item Flattened ID (page 27).

dispatch

A runtime operation that performs several chores, one of which is to launch a kernel. See 2.1. Overview
of Grids, Work-Groups, and Work-Items (page 23).

divergent control flow

A situation in which kernels include branches and the execution of different work-items grouped into a
wavefront might not be uniform. See 2.12. Divergent Control Flow (page 41).

fbarrier

A fine-grain barrier that applies to a subset of a work-group. See 9.2. Fine-Grain Barrier (fbarrier)
Instructions (page 230).

finalizer

A finalizer is part of the HSA runtime and translates HSAIL code in the form of BRIG into an HSA code
object that contains the appropriate native machine code for a kernel agent that is part of an HSA
system. When an application uses the HSA runtime it can optionally include the finalizer.

finalizer extension

An operation specific to a finalizer. Finalizer extensions are specified in the extension directive and
accessed like all HSAIL instructions. See 13.1. extension Directive (page 274).

flattened absolute ID

The result after a work-group absolute ID or work-item absolute ID is flattened into one dimension. See
2.3.4. Work-Item Flattened Absolute ID (page 27).

global segment

A memory segment in which memory is visible to all work-items in all kernel agents and to all host
CPUs. See 2.8.1. Types of Segments (page 31).

AppendixB. Glossary of HSAILTerms

AppendixB. Glossary of HSAILTerms

grid

A multidimensional, rectangular structure containing work-groups. A grid is formed when a program
launches a kernel. See 1.2. HSAIL Virtual Language (page 21).

group segment

A memory segment in which memory is visible to a single work-group. See 2.8.1. Types of Segments
(page 31).

host CPU

An agent that also supports the native CPU instruction set and runs the host operating system and the
HSA runtime. As an agent, the host CPU can dispatch commands to a kernel agent using memory
instructions to construct and enqueue AQL packets. In some systems, a host CPU can also act as a
kernel agent (with appropriate HSAIL finalizer and AQL mechanisms). See 1.1. What Is HSAIL? (page 20).

HSA code object

An HSAIL program can be finalized to produce an HSA code object for a specific instruction set
architecture. An HSA code object can then be loaded into an HSA executable for a specific kernel agent
that supports the instruction set architecture of the HSA code object. The kernels in the HSA executable
can then be executed on the kernel agent on which they have been loaded. See 4.2. Program, Code
Object, and Executable (page 48).

HSA executable

An HSA executable manages the allocation of global and readonly segment variables defined by HSA
code objects. It also manages linking global and readonly segment variable declarations to external
definitions outside the HSA executable, such as in the host application. An application can use the HSA
runtime to create zero or more HSA executables, to which zero or more HSA code objects can be
loaded for different kernel agents. See 4.2. Program, Code Object, and Executable (page 48).

HSA implementation

A combination of one or more host CPU agents able to execute the HSA runtime, one or more kernel
agents able to execute HSAIL programs, and zero or more other agents that participate in the HSA
memory model.

HSA runtime

A library of services that can be executed by the application on a host CPU that supports the execution
of HSAIL programs. This includes: support for User Mode Queues, signals and memory management;
optional support for images and samplers; a finalizer; and a loader. See the HSA Runtime Programmer’s
Reference Manual.

HSAIL

Heterogeneous System Architecture Intermediate Language. A virtual machine and a language. The
instruction set of the HSA virtual machine that preserves virtual machine abstractions and allows for
inexpensive translation to machine code.

378 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 379

HSAIL module

The unit of HSAIL generation. A single module can contain multiple declarations and definitions. It can
be added to one or more HSAIL programs. See 4.2. Program, Code Object, and Executable (page 48)
and 4.3. Module (page 53).

HSAIL program

The unit of HSAIL linkage. An application can use the HSA runtime to create zero or more HSAIL
programs, and add zero or more HSAIL modules to a program. The program linkage names of a
module are linked with the program linkage names in the other modules in the same program. For each
program, the modules must collectively define all the kernels, functions, variables and fbarriers
referenced directly and indirectly by the kernels and indirect functions at the time they are finalized.
The exception is that global and readonly segment variables may be declared only, in which case the
HSA executable must be used to provide the definition, such as to a host application variable. See 4.2.
Program, Code Object, and Executable (page 48) and 4.3. Module (page 53).

illegal operation

An operation that a finalizer is allowed (but not required) to complain about.

image handle

An opaque handle to an image that includes information about the properties of the image and access
to the image data. See 7.1.7. Image Creation and Image Handles (page 211).

interval

A range of values expressed as a starting value and an ending value. A closed interval includes both
endpoint values and is expressed using the notation [m, n]. An open interval does not include either
endpoint value and is expressed using the notation (m, n). A half-open interval is inclusive of one
endpoint value and exclusive of the other endpoint value. A right-open interval is expressed using the
notation [m, n) to denote an interval that includes m but does not include n. A left-open interval is
expressed using the notation (m, n] to denote the left-open interval that is exclusive of m but inclusive of
n.

invalid address

An invalid address is a location in application global memory where an access from a kernel agent or
other agent is violating system software policy established by the setup of the system page table
attributes. If a kernel agent accesses an invalid address, system software shall be notified. See HSA
Platform System Architecture Specification Version 1.0 section 2.1 Requirement: Shared Virtual Memory and
section 2.9.3 Error handling.

kernarg segment

A memory segment used to pass arguments into a kernel. See 2.8.1. Types of Segments (page 31).

kernel

A section of code executed in a data-parallel way by a compute unit. Kernels are written in HSAIL and
then separately translated by a finalizer to the target instruction set. See 1.1. What Is HSAIL? (page 20).

AppendixB. Glossary of HSAILTerms

AppendixB. Glossary of HSAILTerms

kernel agent

An agent that supports the HSAIL instruction set and supports execution of AQL kernel dispatch packets.
As an agent, a kernel agent can dispatch commands to any kernel agent (including itself) using memory
instructions to construct and enqueue AQL packets. A kernel agent is composed of one or more
compute units. See 1.1. What Is HSAIL? (page 20).

lane

An element of a wavefront. The wavefront size is the number of lanes in a wavefront. Thus, a wavefront
with a wavefront size of 64 has 64 lanes. See 2.6. Wavefronts, Lanes, and Wavefront Sizes (page 29).

loader

A loader is part of the HSA runtime and can load HSA code objects onto a kernel agent that is part of
the HSA system. In addition, it can provide the information required for the application to create AQL
kernel dispatch packets that can execute the kernels contained in the loaded HSA code object.

module linkage

A condition in which the name of a variable, a function, a kernel or an fbarrier definition or declaration
in one HSAIL module cannot refer to (cannot be linked together with) an object defined or declared with
the same name in a different HSAIL module. Each HSAIL module allocates a distinct object. See 4.12.2.
Module Linkage (page 98).

NaN

Not A Number. A class of floating-point values defined by IEEE/ANSI Standard 754-2008. Used to
indicate that a value is not a valid floating-point number. Can either be a quiet NaN or a signaling NaN.
See 4.19.4. Not A Number (NaN) (page 111).

natural alignment

Alignment in which a memory operation of size n bytes has an address that is an integer multiple of n.
For example, naturally aligned 8-byte stores can only be to addresses 0, 8, 16, 24, 32, 40, and so forth.
See 4.3.10. Declaration and Definition Qualifiers (page 69).

packet ID

Each AQL packet has a 64-bit packet ID unique to the User Mode Queue on which it is enqueued. The
packet ID is assigned as a monotonically increasing sequential number of the logical packet slot
allocated in the User Mode queue. The combination of the packet ID and the queue ID is unique for a
process.

packet processor

Packet processors are tightly bound to one or more agents, and provide the functionality to process
AQL packets enqueued on User Mode Queues of those agents. The packet processor function may be
performed by the same or by a different agent to the one with which the User Mode Queue is
associated that will execute the kernel dispatch packet or agent dispatch packet function.

private segment

A memory segment in which memory is visible only to a single work-item. Used for read-write memory.
See 2.8.1. Types of Segments (page 31).

380 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 381

program linkage

A condition in which a name of a variable, a function, a kernel or an fbarrier declared in one HSAIL
module can refer to (is linked together with) an object with the same name defined with program
linkage in a different HSAIL module in the same HSAIL program. A single object is allocated and
referenced by the multiple HSAIL modules that are members of the same HSAIL program. Global and
readonly segment variables with program linkage may also be linked to defintions outside the HSAIL
program using the HSA executable. See 4.12.1. Program Linkage (page 97).

queue ID

An identifier for a User Mode Queue in a process. Each queue ID is unique in the process. The
combination of the queue ID and the packet ID is unique for a process.

read atomicity

A condition of a load such that it must be read in its entirety.

readonly segment

A memory segment for read-only memory. See 2.8.1. Types of Segments (page 31).

release synchronizing operation

A memory instruction marked with release (an st_rel, atomic_ar, or atomicnoret_ar
instruction).

sampler handle

An opaque handle to a sampler which specifies how coordinates are processed by an rdimage image
instruction. See 7.1.8. Sampler Creation and Sampler Handles (page 214).

segment

A contiguous addressable block of memory. Segments have size, addressability, access speed, access
rights, and level of sharing between work-items. Also called memory segment. See 2.8. Segments (page
31).

signal handle

An opaque handle to a signal which can be used for notification between threads and work-items
belonging to a single process potentially executing on different agents in the HSA system. See 6.8.
Notification (signal) Instructions (page 187).

spill segment

A memory segment used to load or store register spills. See 2.8.1. Types of Segments (page 31).

ULP

Used to specify the precision of a floating-point operation. See 4.19.6. Unit of Least Precision (ULP)
(page 112).

uniform operation

An instruction that produces the same result over a set of work-items. The set of work-items could be
the work-group, the slice of work-items specified by the width modifier, or the wavefront. See 2.12.
Divergent Control Flow (page 41).

AppendixB. Glossary of HSAILTerms

AppendixB. Glossary of HSAILTerms

User Mode Queue

A User Mode Queue is a memory data structure created by the HSA runtime on which AQL packets can
be enqueued. The packets are processed by the packet processor associated with the User Mode
Queue. For example, a User Mode Queue associated with the packet processor of a kernel agent can be
used to execute kernels on that kernel agent. See HSA Platform System Architecture Specification Version
1.0 section 2.8 Requirement: User Mode Queuing.

wavefront

A group of work-items executing on a single instruction pointer. See 2.6. Wavefronts, Lanes, and
Wavefront Sizes (page 29).

WAVESIZE

An implementation defined constant specifying the size of a wavefront for a kernel agent. See 2.6.2.
Wavefront Size (page 30) and 2.6. Wavefronts, Lanes, and Wavefront Sizes (page 29).

work-group

A collection of work-items from the same kernel dispatch. See 2.2. Work-Groups (page 25).

work-group ID

The identifier of a work-group expressed in three dimensions. See 2.2.1. Work-Group ID (page 25).

work-group flattened ID

The work-group ID flattened into one dimension. See 2.2.2. Work-Group Flattened ID (page 26).

work-item

The simplest element of work. Another name for a unit of execution in a kernel dispatch. See 2.3. Work-
Items (page 26).

work-item absolute ID

The identifier of a work-item (within the grid) expressed in three dimensions. See 2.3.3. Work-Item
Absolute ID (page 27).

work-item flattened ID

The work-item ID flattened into one dimension. Uses work-group size and so differs for partial work-
groups than current work-item flattened ID. See 2.3.2. Work-Item Flattened ID and Current Work-Item
Flattened ID (page 27).

work-item flattened absolute ID

The work-item absolute ID flattened into one dimension. See 2.3.4. Work-Item Flattened Absolute ID
(page 27).

work-item ID

The identifier of a work-item (within the work-group) expressed in three dimensions. See 2.3.1. Work-
Item ID (page 26).

write atomicity

A condition of a store such that it must be written in its entirety.

382 | HSA Programmer's ReferenceManual, Version1.0 Final

Index

HSA Programmer's ReferenceManual, Version1.0 Final | 383

2

24-bit integer optimization instructions 122, 349
mad24 122, 367
mad24hi 123, 367
mul24 123, 280-282, 367
mul24hi 123, 367

A

acquire memory order 376
active work-group 28, 376
active work-item 28, 43-44, 175, 376
addressing mode 199, 206-211, 214-216, 346
agent 20-21, 31-35, 38-39, 70-71, 95, 114, 167, 169-171,

173, 180, 187-188, 195-196, 211-215, 217, 253,
263-264, 267-268, 365, 375-376, 378, 380

aggregate constant 91-92
application program 376
Architected Queuing Language 20, 24, 376, 378, 380
arg segment 34, 66, 74, 78-79, 97-99, 132, 166, 212, 214,

217, 244-248, 292, 375-376
argument scope 74, 79, 99, 243-245, 256, 328, 375
argument scope arg segment 52
arguments 296
arithmetic instructions 109, 116
atomic memory instruction 170-173, 180-181, 185, 265,

307

B

base data type 99, 101, 377
Base profile 85, 100, 103, 108, 110-111, 130, 133, 142, 144,

162, 165, 173, 177-178, 284, 288-289
Base profile 131
bit conditional move instruction 140, 351

cmov 140, 351
bit string instructions 127

bitextract 127
bitinsert 128
bitmask 128
bitrev 128
bitselect 128
firstbit 128-129
lastbit 129

bits per pixel 198, 204, 211
branch instructions 41, 44-45, 94, 104, 132, 227-228, 370

brn 227
cbr 41, 44-45, 227, 370
sbr 41, 44, 94, 132, 228, 370

BREAK 112, 271, 273, 279, 296-297

BRIG binary format 48, 92, 198, 275, 298, 300, 313, 317-
318, 321, 348, 358, 376

C

call convention 377
call instruction 217
channel order 195, 198-200, 204-205, 208-209, 344
channel type 195, 198, 200-201, 204-205, 212, 216, 345
clock special instruction 43, 265
code object. HSA 378
compare instructions 80, 155, 289, 332, 365, 368

cmp 133, 155, 289, 365, 368
compile-time macro 30, 267
compound type 99-100, 105, 126, 134-136, 173, 234, 314,

377
compute 296
compute unit 24-25, 39, 230, 267-268, 271, 374, 376-377,

379-380
control 365
control (c) register 80, 125, 147
control directive 24, 61-62, 240, 262, 271, 278-283

enablebreakexceptions 279
enabledetectexceptions 271, 279-280, 365
maxdynamicgroupsize 280
maxflatgridsize 280
maxflatworkgroupsize 281
requireddim 281
requiredgridsize 282
requiredworkgroupsize 282
requirenopartialworkgroups 283

control flow 227, 245
control flow divergence 228, 252, 254, 293
conversion instructions 100, 106, 159-160, 173, 176, 179,

270, 289-291, 332-333, 365-366, 368
cvt 106, 111, 159, 173, 176, 179, 270, 289-291, 368

coordinate normalization mode 206, 211, 214
copy instructions 34, 71-74, 104, 115, 119, 130, 132, 160,

188, 217, 247, 275, 365, 367-368
combine instruction 131
expand instruction 131
lda 34, 71-74, 104, 115, 132, 188, 217, 247, 365, 367
mov 132, 160, 188, 217, 275, 365, 368

current work-item flattened ID 27, 377
currentworkgroupsize special instruction 258

D

debugtrap special instruction 266, 272
declaration 58
default_float_rounding 285

Index

Index

DETECT 108, 112, 261-262, 271, 279-280, 297
dimension 24-27, 29, 64-65, 194, 196-197, 199, 206-207,

211, 222-223, 245, 257-260, 281-283, 328, 346,
358, 374, 377, 382

directive 30, 55, 61-63, 82, 101, 171, 194, 240, 262, 274-
283, 298, 303, 305, 320-321, 325-326, 328, 339,
342-343, 347, 356-358, 377

extension directive 55, 63, 101, 171, 194, 274-275, 377
dispatch 24-25, 32-35, 38, 114, 171-172, 212, 218-219, 262,

376-378, 380
divergent control flow 41-42, 44, 293, 377

E

exception instructions 260-261, 271, 297, 366
cleardetectexcept 261
getdetectexcept 261, 271, 297, 366
setdetectexcept 261, 271, 366

exceptions 108, 110-112, 143, 165, 260-261, 269-273, 279-
280, 289-291, 295-297

executable, HSA 378
extension directive 274

F

filter mode 206-207, 209-211, 214, 216, 218, 346
finalization 49
finalizer 50, 63, 168-169, 172, 228, 243, 254, 262, 271, 278,

280-283, 296-297, 377-378
finalizer extension 63, 377
fine-grain barrier 25, 43, 61, 63, 68, 97, 230-236, 321, 324-

325, 357, 364-366, 377
flattened absolute ID 27, 377, 382
floating-point arithmetic instructions 29, 116, 118-120,

140, 142-144, 183, 202-203, 270, 289-290, 292,
365, 367

add instruction 142, 270
ceil 142
div 118, 142, 270, 292, 367
floor 142
fma 142-143, 270, 289-290, 367
fract 143
max 116, 119, 143, 183, 202-203, 367
min 119, 143, 183, 202-203, 367
mul 119, 143, 270, 365, 367
rint 143
sqrt 144, 270
sub 120, 144, 183, 270, 367
trunc 144, 367

floating-point bit instructions 111, 117-119, 146-147, 168-
169, 252, 289, 331, 333-334, 366-367

abs 147
class 147, 168-169, 252, 331, 333-334, 367
copysign 147
neg 147

floating-point optimization instruction 144
ftz modifier 110-111, 146, 148, 156, 162, 165, 270, 290-291

Full profile 111, 142, 144, 284, 288-290
function 34, 41, 52, 58-60, 62-63, 70, 72-74, 78-80, 96-99,

217, 243-255, 277-278, 282-283, 304, 320-321, 323-
324, 328, 356, 362, 364

declaration 98
definition 98-99
function declaration 58-59, 70, 74, 79, 97, 247
function definition 58-59, 70, 74, 244-247, 323-324
indirect function 52, 248, 250

function instructions 41, 44, 46-47, 50, 60, 62-63, 65, 68,
74, 217, 243-256, 275, 330, 366, 370-371

alloca 245, 255-256, 366, 371
call instruction 62-63, 243-245, 246-248, 250, 252
icall 41, 44, 60, 248, 253-254, 370
ret 46-47, 74, 243-244, 247-249, 254-255, 275, 330, 366
scall 41, 44, 50, 65, 68, 250-253, 370

function signature 55, 60, 63, 70, 73-74, 78-79, 99, 104,
114, 246, 248, 254, 275, 322-324, 357-358, 364

G

global segment 22, 31-33, 35, 39, 70-71, 94-95, 97, 107,
114-115, 167, 170-172, 180, 188-190, 197, 213-215,
219, 253, 263-264, 268, 294, 328, 335, 377

grid 21, 24-25, 27-28, 72-73, 167, 258-259, 282, 378, 382
group segment 22, 24, 26, 32, 35-36, 38-39, 52, 73, 96-97,

107, 112-113, 132, 167, 170, 180, 230, 234, 237,
253, 261, 266, 280, 286-287, 335, 374, 378

H

hardware registers 34, 39, 50, 52, 73-74
host CPU 20-21, 32-33, 38-39, 171, 253, 267, 285, 376-378
HSA code object 378
HSA executable 378
HSA implementation 20-21, 23-24, 28, 38-41, 43-44, 63, 71-

74, 78, 110-112, 114-115, 122, 148, 170, 172-173,
175, 179-180, 187-188, 190-191, 195, 197, 202,
204, 206-207, 211-214, 228-230, 234, 240, 244,
250, 252, 256, 261-262, 265-266, 269-270, 277,
284, 288-290, 292-293, 314, 318, 374-375, 378

HSA runtime 268, 378
HSAIL 378

HSAIL module 379
HSAIL program 379

I

illegal instruction 379
image 82, 101, 170, 194-199, 204, 208-209, 211-214, 216-

218, 220, 274-275, 294, 304-305, 333, 336, 344-345
image access permission 211-212, 217
image coordinates 195, 206, 209, 219-223
image data 195-200, 211-213, 216-221, 223, 335, 375,

379
image element 195, 197-198, 201, 206-209, 211, 218-

219, 223

384 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 385

image geometry 195-196, 204-206, 209, 211-213, 216,
333, 336

image handler 217
image memory model 169, 196, 218
image sampler 206-207, 215-218, 220, 222, 346, 355-

356, 375
image segment 171, 218-219, 335
image size 82, 194-195, 197, 211-212
pixel 151, 198
texel 209

image format 195, 198, 204, 211-213, 223
image instructions 112, 169, 194-198, 201-204, 206-207,

209, 211-212, 216-221, 223, 274, 294, 302, 333,
335, 355

imagefence 225-226
ldimage 169, 206, 210, 212, 216-217, 221-222, 275, 366,

370
queryimage 217, 224, 275, 305, 336, 366, 370
querysampler 217, 224-225, 275, 313, 336, 366, 370
rdimage 195, 197, 206-207, 210, 214, 216-220, 222,

275, 366, 370, 381
stimage 169, 206, 209-210, 216-217, 222-223, 275, 366,

370
imagefence 275
indirect function descriptor 41
individual bit instructions 125-126

and instruction 125
not instruction 126
or instruction 125
xor instruction 125

integer arithmetic instructions 116, 118-120
abs instruction 118
add instruction 118
borrow instruction 118
carry instruction 118
div instruction 118
max instruction 116, 119
min instruction 119
mul instruction 119
mulhi instruction 119
neg instruction 119
rem instruction 119
sub instruction 120

integer optimization instruction 121-122
mad 121, 367

integer shift instructions 123-124
shl 124, 367
shr 124, 367

interval 190-191, 379
closed interval 200, 202-203, 379
half-open interval 207, 379
left-open interval 379
open interval 379
right-open interval 276, 284, 320, 330, 339, 379

invalid address 269, 379
ISA 20, 292, 318, 326

K

kernarg segment 33, 35, 38, 53, 72-73, 96, 98, 114-115,
132, 166, 171, 175, 267, 375, 379

kernel 24-25, 32-34, 38-39, 50, 52-53, 56-57, 71, 73, 95-97,
99, 112-115, 132, 171-172, 212, 214, 218-219, 252-
254, 259, 262, 266, 271, 276-277, 279-281, 297,
322, 325, 362, 364, 377, 379

kernel descriptor 97
kernel agent 20-21, 24-25, 31-33, 36, 38-39, 53, 71, 114-

115, 170-171, 204, 212, 214-215, 218, 230, 264,
267, 272, 274, 283, 376-378, 380, 382

kernel dispatch 376, 380
kernel dispatch packet instructions 26, 28, 257-258, 327-

328, 366, 371
currentworkgroupsize 258
dim 258, 327-328, 366
gridgroups 258
gridsize 258
packetcompletionsig 258, 371
packetid 259
workgroupid 259
workgroupsize 259
workitemabsid 259
workitemflatabsid 28, 259, 366
workitemflatid 259
workitemid 260

L

lane 29, 241, 267, 333-334, 380
library 286-287, 378
limits 28, 40, 194, 197, 211, 214, 279, 288-289, 375
linkage 56-60, 64-65, 97, 306, 323-325, 327-328

arg linkage 65, 70, 99
function linkage 57, 59, 65, 68, 70, 98-99
module linkage 57-58, 65, 68, 70, 98, 286, 380
program linkage 57-58, 65, 68, 70, 79, 97-98, 286, 381

loader 380

M

machine instructions 43
machine model 39-40, 101, 130-131, 154-155, 166-167,

187, 234, 285, 296
memory fence 166, 169-170, 192, 194, 233, 237-238, 307,

335
memory instructions 31, 35, 43, 166, 168-173, 179, 187,

218, 292, 307, 334-335, 378, 380
atomic 170, 180-181, 187-188, 190, 229, 264, 302, 331,

366, 368
atomicnoret 180-186, 190, 212, 366, 369
ld 115, 169, 173-174, 176, 181-182, 216-217, 246, 275,

294, 368
ld | AuthoringStatus.DONE | [11] 366
memfence 192-193, 335, 366, 369

Index

Index

signal 40, 43, 101, 187-191, 258, 260, 269, 271-272,
302, 307, 338, 355, 366, 369, 381

signalnoret 190, 366, 369
st 169, 177, 179, 182, 217, 246, 275, 366, 368

memory model 20-21, 32, 169, 171, 188, 218, 295, 376, 378
memory order 169, 173, 181, 307, 330-331, 335, 337-

338
memory scope 95, 170, 172-173, 180-181, 219, 307,

330-331
memory segment 26, 36, 153, 167, 171, 314, 376-381
synchronizing memory instruction 173, 294-295

miscellaneous instructions 264-265
cuid 266, 366
groupbaseptr 266, 366
kernargbaseptr 114, 265, 267, 366
laneid 267, 366
maxcuid 266-267, 366
maxwaveid 267, 366
nop 267
nullptr 153, 267, 366
waveid 268, 366

module header 40, 54, 82, 284, 288, 318
module linkage 380
multimedia instructions 150

bitalign 150-151, 367
bytealign 151, 367
lerp 151, 367
packcvt 151, 365, 368
sad 151-152, 365, 368
sadhi 152, 368
unpackcvt 151, 365, 368

N

native floating-point instructions 111, 148, 270
ncos 149, 366
nexp2 149, 366
nfma 149
nlog2 149, 270, 366
nrcp 149, 292, 366
nrsqrt 149, 366
nsin 149, 367
nsqrt 108, 149, 367

natural alignment 71-72, 114, 214, 328, 380

P

packed data 80, 101, 133, 311
packed data instructions 133

pack 135
shuffle 134, 367
unpack 135
unpackhi 135, 367
unpacklo 134, 367

packet 24
packet ID 380
packet processor 380
packing control 101, 311, 332, 336

padding bytes 314, 320
partial lane 44
partial wavefront 44
partial work-group 25-26, 258
performance tuning 278
persistence rules 38
pixel 195
popcount 126
pragma directive 276-277
private segment 22, 28, 32-34, 36, 38-39, 52, 73, 96-97,

244, 246-247, 250, 252-253, 255-256, 292, 374, 380
profile 21, 40, 100, 111-112, 148, 202, 284, 288-289, 311,

326, 362
profiles

Base profile 289
Full profile 290

program linkage 381

Q

queue ID 24, 259, 381

R

race condition 232, 234-235, 237
read atomicity 381
readonly segment 33-34, 38, 64, 70, 72, 94, 95-98, 171,

175, 188, 212-215, 295, 318, 328, 381
register pressure 292
release synchronizing instruction 381
runtime 20-21, 33, 48-49, 53, 112, 173, 190-191, 204, 211-

212, 214, 218, 269, 271-272, 276, 279, 378
runtime library 279

S

sampler 214-218, 346
sampler handle 101, 195-196, 214-215, 217-218, 346

sampler handle 381
segment 31, 35-36, 38, 70-71, 100-101, 107, 132, 153-154,

166-167, 170-171, 173, 212, 214-215, 217, 267-268,
296, 327, 330-331, 334, 337-338, 380-381

segment checking instructions 100, 153
segmentp 38, 100, 153, 167, 368

segment conversion instructions 154, 368
ftos 132, 154, 167, 368
stof 132, 154-155, 167, 368

segment modifier 107, 170
shared virtual memory 35, 379
shuffle instruction 137
signature 362
signed or unsigned 128
small model 39-40
special instructions 26, 42, 257, 264, 269

addqueuewriteindex 263, 371
casqueuewriteindex 263
ldqueuereadindex 263, 371
ldqueuewriteindex 263-264, 371

386 | HSA Programmer's ReferenceManual, Version1.0 Final

HSA Programmer's ReferenceManual, Version1.0 Final | 387

stqueuereadindex 264, 371
stqueuewriteindex 264

spill segment 34, 39-40, 52, 72-73, 96-97, 132, 292, 381

U

uniform instruction 381
unit of least precision (ULP) 381
URL 381
User Mode Queue 382
user mode queue instructions 262-263

addqueuewriteindex 263
casqueuewriteindex 263
ldqueuereadindex 263
ldqueuewriteindex 264
stqueuereadindex 264
stqueuewriteindex 264

V

variadic function 248
vector operand 106
virtual machine 19-20, 277, 378

W

wavefront 29, 39, 42, 232-233, 241, 255, 261-262, 272-273,
347, 380-382

wavefront size 29-30, 41, 43, 45, 229, 240-241, 267, 281-
282, 293, 318, 374, 380

WAVESIZE 30, 44-45, 94, 104-106, 175, 177, 192, 235-237,
240-242, 267, 276, 284, 318, 347, 361, 382

width modifier 42, 44-45, 175-176, 228-230, 252, 254, 318,
332, 334-335

work-group 24-28, 32, 35, 38, 43, 52, 113, 170, 218-219,
229-230, 233-234, 236, 255, 271, 280-281, 322,
374, 377-378, 381-382

work-group absolute ID 36, 377
work-group flattened ID 26, 374, 382
work-group ID 25-26, 260, 382
work-item 21, 26-27, 32-33, 37-39, 43-44, 52, 96-97, 170,

175-176, 190-191, 218-219, 231-232, 234, 241, 243,
261, 265-267, 273, 281, 380-382

work-item absolute ID 25, 27, 36, 260, 377, 382
work-item flattened absolute ID 27-28, 382
work-item flattened ID 27, 29, 382
work-item flattened ID, current 27
work-item ID 26-27, 260, 382
workitemflatabsid 259
write atomicity 382

Index

	HSA Programmer's Reference Manual, Version 1.0
	Acknowledgments
	Contents
	Figures
	Tables

	About the HSA Programmer's Reference Manual
	Audience
	Document Conventions
	HSA Information Sources

	Chapter 1. Overview
	1.1 What Is HSAIL?
	1.2 HSAIL Virtual Language
	1.3 HSAIL Experimental Features

	Chapter 2. HSAIL Programming Model
	2.1 Overview of Grids, Work-Groups, and Work-Items
	2.2 Work-Groups
	2.2.1 Work-Group ID
	2.2.2 Work-Group Flattened ID

	2.3 Work-Items
	2.3.1 Work-Item ID
	2.3.2 Work-Item Flattened ID and Current Work-Item Flattened ID
	2.3.3 Work-Item Absolute ID
	2.3.4 Work-Item Flattened Absolute ID

	2.4 Scalable Data-Parallel Computing
	2.5 Active Work-Groups and Active Work-Items
	2.6 Wavefronts, Lanes, and Wavefront Sizes
	2.6.1 Example of Contents of a Wavefront
	2.6.2 Wavefront Size

	2.7 Types of Memory
	2.8 Segments
	2.8.1 Types of Segments
	2.8.2 Shared Virtual Memory
	2.8.3 Addressing for Segments
	2.8.4 Memory Segment Access Rules
	2.8.5 Memory Segment Isolation

	2.9 Small and Large Machine Models
	2.10 Base and Full Profiles
	2.11 Race Conditions
	2.12 Divergent Control Flow
	2.12.1 Uniform Instructions
	2.12.2 Using the Width Modifier with Control Transfer Instructions
	2.12.3 (Post-)Dominator and Immediate (Post-)Dominator

	Chapter 3. Examples of HSAIL Programs
	3.1 Vector Add Translated to HSAIL
	3.2 Transpose Translated to HSAIL

	Chapter 4. HSAIL Syntax and Semantics
	4.1 Two Formats
	4.2 Program, Code Object, and Executable
	4.2.1 Finalization
	4.2.2 Loading
	4.2.3 Execution

	4.3 Module
	4.3.1 Annotations
	4.3.2 Kernel
	4.3.3 Function
	4.3.4 Signature
	4.3.5 Code Block
	4.3.6 Arg Block
	4.3.7 Instruction
	4.3.8 Variable
	4.3.9 Fbarrier
	4.3.10 Declaration and Definition Qualifiers

	4.4 Source Text Format
	4.5 Strings
	4.6 Identifiers
	4.6.1 Syntax
	4.6.2 Scope

	4.7 Registers
	4.8 Constants
	4.8.1 Integer Constants
	4.8.2 Floating-Point Constants
	4.8.3 Typed Constants
	4.8.4 Aggregate Constants
	4.8.5 How Text Format Constants Are Converted to Bit String Constants

	4.9 Labels
	4.10 Variable Initializers
	4.11 Storage Duration
	4.12 Linkage
	4.12.1 Program Linkage
	4.12.2 Module Linkage
	4.12.3 Function Linkage
	4.12.4 Arg Linkage
	4.12.5 None Linkage

	4.13 Data Types
	4.13.1 Base Data Types
	4.13.2 Packed Data Types
	4.13.3 Opaque Data Types
	4.13.4 Array Data Types

	4.14 Packing Controls for Packed Data
	4.14.1 Ranges
	4.14.2 Packed Type Constants

	4.15 Subword Sizes
	4.16 Operands
	4.16.1 Operand Compound Type
	4.16.2 Rules for Operand Registers

	4.17 Vector Operands
	4.18 Address Expressions
	4.19 Floating Point
	4.19.1 Floating-Point Numbers
	4.19.2 Floating-Point Rounding
	4.19.3 Flush to Zero (ftz)
	4.19.4 Not A Number (NaN)
	4.19.5 Floating Point Exceptions
	4.19.6 Unit of Least Precision (ULP)

	4.20 Dynamic Group Memory Allocation
	4.21 Kernarg Segment

	Chapter 5. Arithmetic Instructions
	5.1 Overview of Arithmetic Instructions
	5.2 Integer Arithmetic Instructions
	5.2.1 Syntax
	5.2.2 Description

	5.3 Integer Optimization Instruction
	5.3.1 Syntax
	Description

	5.4 24-Bit Integer Optimization Instructions
	5.4.1 Syntax
	Description

	5.5 Integer Shift Instructions
	5.5.1 Syntax
	5.5.2 Description for Standard Form
	5.5.3 Description for Packed Form

	5.6 Individual Bit Instructions
	5.6.1 Syntax
	Description

	5.7 Bit String Instructions
	5.7.1 Syntax
	Description

	5.8 Copy (Move) Instructions
	5.8.1 Syntax
	Description
	5.8.2 Additional Information About lda

	5.9 Packed Data Instructions
	5.9.1 Syntax
	Description
	5.9.2 Controls in src2 for shuffle Instruction
	5.9.3 Common Uses for shuffle Instruction
	5.9.4 Examples of unpacklo and unpackhi Instructions

	5.10 Bit Conditional Move (cmov) Instruction
	5.10.1 Syntax
	Description

	5.11 Floating-Point Arithmetic Instructions
	5.11.1 Syntax
	Description

	5.12 Floating-Point Optimization Instruction
	5.12.1 Syntax
	Description

	5.13 Floating-Point Bit Instructions
	5.13.1 Syntax
	Description

	5.14 Native Floating-Point Instructions
	5.14.1 Syntax
	Description

	5.15 Multimedia Instructions
	5.15.1 Syntax
	Description

	5.16 Segment Checking (segmentp) Instruction
	5.16.1 Syntax
	Description

	5.17 Segment Conversion Instructions
	5.17.1 Syntax
	Description

	5.18 Compare (cmp) Instruction
	5.18.1 Syntax
	Description

	5.19 Conversion (cvt) Instruction
	5.19.1 Overview
	5.19.2 Syntax
	5.19.3 Rules for Rounding for Conversions
	5.19.4 Description of Integer Rounding Modes
	5.19.5 Description of Floating-Point Rounding Modes

	Chapter 6. Memory Instructions
	6.1 Memory and Addressing
	6.1.1 How Addresses Are Formed
	6.1.2 Memory Hierarchy
	6.1.3 Alignment
	6.1.4 Equivalence Classes

	6.2 Memory Model
	6.2.1 Memory Order
	6.2.2 Memory Scope
	6.2.3 Memory Synchronization Segments
	6.2.4 Non-Memory Synchronization Segments
	6.2.5 Agent Allocation
	6.2.6 Course Grain Allocation
	6.2.7 Kernel Dispatch Memory Synchronization
	6.2.8 Execution Barrier
	6.2.9 Flat Addresses

	6.3 Load (ld) Instruction
	6.3.1 Syntax
	6.3.2 Description
	6.3.3 Additional Information

	6.4 Store (st) Instruction
	6.4.1 Syntax
	6.4.2 Description
	6.4.3 Additional Information

	6.5 Atomic Memory Instructions
	6.6 Atomic (atomic) Instructions
	6.6.1 Syntax
	6.6.2 Description of Atomic and Atomic No Return Instructions

	6.7 Atomic No Return (atomicnoret) Instructions
	6.7.1 Syntax
	6.7.2 Description

	6.8 Notification (signal) Instructions
	6.8.1 Syntax
	6.8.2 Description of Signal Instructions

	6.9 Memory Fence (memfence) Instruction
	6.9.1 Syntax
	6.9.2 Description

	Chapter 7. Image Instructions
	7.1 Images in HSAIL
	7.1.1 Why Use Images?
	7.1.2 Image Overview
	7.1.3 Image Geometry
	7.1.4 Image Format
	7.1.4.1 Channel Order
	7.1.4.1.1 x-Form Channel Orders
	7.1.4.1.2 Standard RGB (s-Form) Channel Orders

	7.1.4.2 Channel Type
	7.1.4.3 Bits Per Pixel (bpp)

	7.1.5 Image Access Permission
	7.1.6 Image Coordinate
	7.1.6.1 Coordinate Normalization Mode
	7.1.6.2 Addressing Mode
	7.1.6.3 Filter Mode

	7.1.7 Image Creation and Image Handles
	7.1.8 Sampler Creation and Sampler Handles
	7.1.9 Using Image Instructions
	7.1.10 Image Memory Model

	7.2 Read Image (rdimage) Instruction
	7.2.1 Syntax
	Description

	7.3 Load Image (ldimage) Instruction
	7.3.1 Syntax
	Description

	7.4 Store Image (stimage) Instruction
	7.4.1 Syntax
	Description

	7.5 Query Image and Query Sampler Instructions
	7.5.1 Syntax
	7.5.2 Description

	7.6 Image Fence (imagefence) Instruction
	7.6.1 Syntax
	Description

	Chapter 8. Branch Instructions
	8.1 Syntax
	8.2 Description

	Chapter 9. Parallel Synchronization and Communication Instructions
	9.1 Barrier Instructions
	9.1.1 Syntax
	9.1.2 Description

	9.2 Fine-Grain Barrier (fbarrier) Instructions
	9.2.1 Overview: What Is an Fbarrier?
	9.2.2 Syntax
	9.2.3 Description
	9.2.4 Additional Information About Fbarrier Instructions
	9.2.5 Pseudocode Examples

	9.3 Execution Barrier
	9.4 Cross-Lane Instructions
	9.4.1 Syntax
	9.4.2 Description

	Chapter 10. Function Instructions
	10.1 Functions in HSAIL
	10.1.1 Example of a Simple Function
	10.1.2 Example of a More Complex Function
	10.1.3 Functions That Do Not Return a Result

	10.2 Function Call Argument Passing
	10.3 Function Declarations, Function Definitions, and Function Signatures
	10.3.1 Function Declaration
	10.3.2 Function Definition
	10.3.3 Function Signature

	10.4 Variadic Functions
	10.5 align Qualifier
	10.6 Direct Call (call) Instruction
	10.6.1 Syntax
	Description

	10.7 Switch Call (scall) Instruction
	10.7.1 Syntax
	10.7.2 Description

	10.8 Indirect Call (icall) Instruction
	10.8.1 Syntax
	10.8.2 Description

	10.9 Return (ret) Instruction
	10.9.1 Syntax
	10.9.2 Description

	10.10 Allocate Memory (alloca) Instruction
	10.10.1 Syntax
	10.10.2 Description

	Chapter 11. Special Instructions
	11.1 Kernel Dispatch Packet Instructions
	11.1.1 Syntax
	11.1.2 Description

	11.2 Exception Instructions
	11.2.1 Syntax
	11.2.2 Description
	11.2.3 Additional Information

	11.3 User Mode Queue Instructions
	11.3.1 Syntax
	11.3.2 Description

	11.4 Miscellaneous Instructions
	11.4.1 Syntax
	11.4.2 Description

	Chapter 12. Exceptions
	12.1 Kinds of Exceptions
	12.2 Hardware Exceptions
	12.3 Hardware Exception Policies
	12.4 Debug Exceptions
	12.5 Handling Signaled Exceptions
	12.5.1 HSA Runtime Debug Interface Not Active
	12.5.2 HSA Runtime Debug Interface Active
	12.5.2.1 Sample Debug Interface

	Chapter 13. Directives
	13.1 extension Directive
	13.1.1 extension CORE
	13.1.2 extension IMAGE
	13.1.3 How to Set Up Finalizer Extensions

	13.2 loc Directive
	13.3 pragma Directive
	13.4 Control Directives for Low-Level Performance Tuning

	Chapter 14. module Header
	14.1 Syntax of the module Header

	Chapter 15. Libraries
	15.1 Library Restrictions
	15.2 Library Example

	Chapter 16. Profiles
	16.1 What Are Profiles?
	16.2 Profile-Specific Requirements
	16.2.1 Base Profile Requirements
	16.2.2 Full Profile Requirements

	Chapter 17. Guidelines for Compiler Writers
	17.1 Register Pressure
	17.2 Using Lower-Precision Faster Instructions
	17.3 Functions
	17.4 Frequent Rounding Mode Changes
	17.5 Wavefront Size
	17.6 Control Flow Optimization
	17.7 Memory Access
	17.8 Unaligned Access
	17.9 Constant Access
	17.10 Segment Address Conversion
	17.11 When to Use Flat Addressing
	17.12 Arg Arguments
	17.13 Exceptions

	Chapter 18. BRIG: HSAIL Binary Format
	18.1 What Is BRIG?
	18.2 BRIG Module
	18.3 Support Types
	18.3.1 Section Offsets
	18.3.2 BrigAlignment
	18.3.3 BrigAllocation
	18.3.4 BrigAluModifierMask
	18.3.5 BrigAtomicOperation
	18.3.6 BrigBase
	18.3.7 BrigCompareOperation
	18.3.8 BrigControlDirective
	18.3.9 BrigExceptionsMask
	18.3.10 BrigExecutableModifierMask
	18.3.11 BrigImageChannelOrder
	18.3.12 BrigImageChannelType
	18.3.13 BrigImageGeometry
	18.3.14 BrigImageQuery
	18.3.15 BrigKind
	18.3.16 BrigLinkage
	18.3.17 BrigMachineModel
	18.3.18 BrigMemoryModifierMask
	18.3.19 BrigMemoryOrder
	18.3.20 BrigMemoryScope
	18.3.21 BrigModuleHeader
	18.3.22 BrigOpcode
	18.3.23 BrigPack
	18.3.24 BrigProfile
	18.3.25 BrigRegisterKind
	18.3.26 BrigRound
	18.3.27 BrigSamplerAddressing
	18.3.28 BrigSamplerCoordNormalization
	18.3.29 BrigSamplerFilter
	18.3.30 BrigSamplerQuery
	18.3.31 BrigSectionIndex
	18.3.32 BrigSectionHeader
	18.3.33 BrigSegCvtModifierMask
	18.3.34 BrigSegment
	18.3.35 BrigType
	18.3.36 BrigUint64
	18.3.37 BrigVariableModifierMask
	18.3.38 BrigVersion
	18.3.39 BrigWidth

	18.4 hsa_data Section
	18.5 hsa_code Section
	18.5.1 Directive Entries
	18.5.1.1 Declarations and Definitions in the Same Module
	18.5.1.2 BrigDirectiveArgBlock
	18.5.1.3 BrigDirectiveComment
	18.5.1.4 BrigDirectiveControl
	18.5.1.5 BrigDirectiveExecutable
	18.5.1.6 BrigDirectiveExtension
	18.5.1.7 BrigDirectiveFbarrier
	18.5.1.8 BrigDirectiveLabel
	18.5.1.9 BrigDirectiveLoc
	18.5.1.10 BrigDirectiveModule
	18.5.1.11 BrigDirectiveNone
	18.5.1.12 BrigDirectivePragma
	18.5.1.13 BrigDirectiveVariable

	18.5.2 Instruction Entries
	18.5.2.1 BrigInstBase
	18.5.2.2 BrigInstAddr
	18.5.2.3 BrigInstAtomic
	18.5.2.4 BrigInstBasic
	18.5.2.5 BrigInstBr
	18.5.2.6 BrigInstCmp
	18.5.2.7 BrigInstCvt
	18.5.2.8 BrigInstImage
	18.5.2.9 BrigInstLane
	18.5.2.10 BrigInstMem
	18.5.2.11 BrigInstMemFence
	18.5.2.12 BrigInstMod
	18.5.2.13 BrigInstQueryImage
	18.5.2.14 BrigInstQuerySampler
	18.5.2.15 BrigInstQueue
	18.5.2.16 BrigInstSeg
	18.5.2.17 BrigInstSegCvt
	18.5.2.18 BrigInstSignal
	18.5.2.19 BrigInstSourceType

	18.6 hsa_operand Section
	18.6.1 Constant Operands
	18.6.2 BrigOperandAddress
	18.6.3 BrigOperandAlign
	18.6.4 BrigOperandCodeList
	18.6.5 BrigOperandCodeRef
	18.6.6 BrigOperandConstantBytes
	18.6.7 BrigOperandConstantImage
	18.6.8 BrigOperandConstantOperandList
	18.6.9 BrigOperandConstantSampler
	18.6.10 BrigOperandOperandList
	18.6.11 BrigOperandRegister
	18.6.12 BrigOperandString
	18.6.13 BrigOperandWavesize

	18.7 BRIG Syntax for Instructions
	18.7.1 BRIG Syntax for Arithmetic Instructions
	18.7.1.1 BRIG Syntax for Integer Arithmetic Instructions
	18.7.1.2 BRIG Syntax for Integer Optimization Instruction
	18.7.1.3 BRIG Syntax for 24-Bit Integer Optimization Instructions
	18.7.1.4 BRIG Syntax for Integer Shift Instructions
	18.7.1.5 BRIG Syntax for Individual Bit Instructions
	18.7.1.6 BRIG Syntax for Bit String Instructions
	18.7.1.7 BRIG Syntax for Copy (Move) Instructions
	18.7.1.8 BRIG Syntax for Packed Data Instructions
	18.7.1.9 BRIG Syntax for Bit Conditional Move (cmov) Instruction
	18.7.1.10 BRIG Syntax for Floating-Point Arithmetic Instructions
	18.7.1.11 BRIG Syntax for Floating-Point Optimization Instruction
	18.7.1.12 BRIG Syntax for Floating-Point Bit Instructions
	18.7.1.13 BRIG Syntax for Native Floating-Point Instructions
	18.7.1.14 BRIG Syntax for Multimedia Instructions
	18.7.1.15 BRIG Syntax for Segment Checking (segmentp) Instruction
	18.7.1.16 BRIG Syntax for Segment Conversion Instructions
	18.7.1.17 BRIG Syntax for Compare (cmp) Instruction
	18.7.1.18 BRIG Syntax for Conversion (cvt) Instruction

	18.7.2 BRIG Syntax for Memory Instructions
	18.7.3 BRIG Syntax for Image Instructions
	18.7.4 BRIG Syntax for Branch Instructions
	18.7.5 BRIG Syntax for Parallel Synchronization and Communication Instructions
	18.7.6 BRIG Syntax for Function Instructions
	18.7.7 BRIG Syntax for Special Instructions
	18.7.7.1 BRIG Syntax for Kernel Dispatch Packet Instructions
	18.7.7.2 BRIG Syntax for Exception Instructions
	18.7.7.3 BRIG Syntax for User Mode Queue Instructions
	18.7.7.4 BRIG Syntax for Miscellaneous Instructions

	Chapter 19. HSAIL Grammar in Extended Backus-Naur Form
	19.1 HSAIL Lexical Grammar in Extended Backus-Naur Form (EBNF)
	19.2 HSAIL Syntax Grammar in Extended Backus-Naur Form (EBNF)

	Appendix A. Limits
	Appendix B. Glossary of HSAIL Terms
	Index

